
The State of Python
… and the web

Armin Ronacher // @mitsuhiko



Who am I

• Armin Ronacher (@mitsuhiko)

• Founding Member of the “Pocoo Team”

• we're doing Jinja2, Werkzeug, Flask, 
Pygments, Sphinx and a bunch of other 
stuff.



Crossroads



Python 3
• The Elephant in the Room



Python in 2011

• The big Python 3 versus Python 2 
debate

• PyPy is making tremendous progress



Recent Python News

• Unladen Swallow is resting

• Python 3.2 was released

• Python's packaging infrastructure is 
being worked on.

• distutils2 / packaging in Python 3



Recent PyPy News

• PyPy gets experimental support for the 
CPython C API

• PyPy got 10.000$ by the PSF

• PyPy 1.5 released

• Are you using PyPy in production? Why 
not? http://bit.ly/pypy-survey

http://bit.ly/pypy-survey
http://bit.ly/pypy-survey


PyPy



PyPy Right Now

• “Python written in Python”

• PyPy trunk 3.7x faster than CPython 
over a wide variety of benchmarks

• Up to 40x faster for certain benchmarks

• Compatible with Python 2.7.1



Really Fast

• http://speed.pypy.org/

http://speed.pypy.org
http://speed.pypy.org


Things that will break

• There is only experimental support for 
the Python C API and it will always be 
slow.

• Different garbage collection behavior, no 
reference counting.



Things that work
• Django

• Flask

• ctypes

• pyglet

• twisted

• sqlite



The Bonus

• Sandbox support

• Stackless execution mode

• A .NET backend



Python 3



Python 3 is …

• … where all new language developments 
are happening

• … adding unicode to the whole stack

• … cleaning up the language

• … breaking backwards compatibility



The Good Parts

• Introduces unicode into exceptions and 
source compilation as well as identifiers

• Greatly improved IO API regarding 
unicode

• New language constructs

• Implementation cleaned up a lot



New Constructs

• Extended iterable unpacking

• Keyword only arguments

• nonlocal

• Function parameter and return value 
annotations



Improved Things

• print as a function

• Improved syntax for catching and raising 
exceptions

• Ellipsis (…) syntax element now available 
everywhere



Different Behavior

• More powerful metaclasses (but 
removed support for some tricks people 
relied on*)

• List comprehensions are now from the 
behavior much closer to generator 
expressions

• * don't abuse undocumented “features”



Warts removed
• Argument unpacking

• Unused nested tuple raising syntax

• Longs no longer exposed

• Classic classes gone

• Absolute imports by default

• Obscure standard library modules



Common Ground



New in 2.6/2.7

• Explicit byte literals, make upgrading 
easier

• Advanced string formatting

• Print as a function

• Class decorators

• New IO library



New in 2.6/2.7

• The multiprocessing package

• Type hierarchy for numbers

• Abstract base classes

• Support for fractions



Going Forward



Beauty or Speed

• Right now it's a decision between the 
beauty of the code (Python 3) or the raw 
performance (PyPy).

• PyPy itself will probably always be written 
in Python 2, but the interpreter might at 
one point support Python 3.



Library Support

• Numeric libraries work great on Python 3 
and benefit of improvements in the 
language.

• PyPy still lacks proper support for the C-
API of Python.



Predictions

• Most people will write their code against 
2.7 with the intention of supporting PyPy.

• Libraries that require the Python C API 
will become less common

• We will see libraries that support 
targeting both Python 2.7 and Python 
3.x.



Python and the Web



WSGI

• New revision for Python 3

• There is some work done to port 
implementations to Python 3

• No longer something people actively care 
about. “It works”



New Developments

• Improvements to PyPy's support for 
database adapters

• Improvements in template compilation to 
take advantage of PyPy's behavior.

• Porting some libraries over to Python 3.



Making Python 3 work



Python 3 can work

• Start porting libraries over.

• Issues with Python 3 will only be resolved 
if people actively try to port.

• The higher level the application, the 
easier to port. Libraries are the culprit.



And it's not hard

• When you're at the port where you can 
drop Python 2.6 support, you can write 
code that survives 2to3 mostly without 
hacks in the code.

• http://bit.ly/python3-now

http://bit.ly/python3-now
http://bit.ly/python3-now


Frameworks



We're doing great

• WSGI works out well in practice.

• Pylons and BFG -> Pyramid, nice 
introduction into the ZOPE world.

• Less and less framework specific code 
out there, easier to reuse.



Less Frameworks*

• Django

• Pyramid

• Flask

• Bottle

• web.py

http://web.py
http://web.py


Low Level

• Werkzeug

• WebOb

• these two might actually merge at one 
point in the future



Frameworks are Good

• New frameworks are necessary to 
explore new paradigms and concepts.

• It's surprisingly easy to switch 
frameworks or parts of frameworks in 
Python.

• Frameworks are merging and evolving.



Thank you



Contact / Slides

• Armin Ronacher

• @mitsuhiko

• http://lucumr.pocoo.org/

• http://lucumr.pocoo.org/talks/ <- Slides

http://lucumr.pocoo.org
http://lucumr.pocoo.org
http://lucumr.pocoo.org/talks/
http://lucumr.pocoo.org/talks/

