
Brought to you by

Overcoming Variable Payloads
to Optimize for Performance

Armin Ronacher
Principal Architect at Sentry

Armin Ronacher
Principal Architect at Sentry

■ Creator of Flask, Werkzeug, Jinja and many Open Source libs

■ Keep things running at Sentry, make event processing go vroom

■ Got to learn to love event processing pipelines

■ Juggling three lovely kids

Why Are We Here?

Sentry Generates, Processes and Shows Events

Sentry Generates, Processes and Shows Events

Sentry Events

■ Session Updates
■ Transaction Events
■ Metrics
■ Reports

● Messages
● Structured Processed Crash Reports
● Structured Unprocessed Crash Reports
● Minidumps
● Third Party Crash Formats
● User Feedback
● Profiles
● Attachments
● Client Reports

Challenges

■ Users want crash reports with low latency
■ Variance of processing times of events from 1ms to 30 minutes
■ How long an event takes, is not always known ahead of time
■ What happens at the end of the pipeline can affect the beginning of it
■ Part of the pipeline is an Onion that can extend closer and closer to the user

Conservative Changes

Touching Running Systems

■ Sentry processes complex events from many sources
■ Any change (even bugfix) can break someone’s workflow
■ We are treating very carefully

Things we try to avoid doing:

■ Bumping Dependencies without reason
■ Rewriting services as busywork

That doesn’t mean we don’t change the pipeline, but we are rather conservative.

Terms and Things

“The Monolith”

■ Written in Python
■ A massive and grown Django app
■ Uses celery and rabbitmq historically for all queue needs
■ Still plays a significant role in the processing logic
■ Uses CFFI to invoke some Rust code

Relay

■ Written in Rust
■ Our ingestion component
■ Layers like an onion
■ Stateful
■ First level quota enforcement
■ Aggregation
■ Data normalization
■ PII stripping

Symbolicator

■ Written in Rust
■ Handles Symbolication

● PDB
● PE/COFF
● DWARF
● MachO
● ELF
● WASM
● IL2CPP

■ Fetches and Manages Debug Information Files (DIFs)
● External Symbol Servers
● Internal Sources

Ingest Consumer

■ Shovels Pieces from the Relay supplied Kafka stream onwards
● Events
● User Reports
● Attachment Chunks
● Attachments

■ Does an initial routing of events to the rest of pipeline

What’s Flowing?

Ingestion Side

SDK Relay Sentry

Envelope
Event /
Other

Envelope

Project ConfigRate Limits

(relays can be and are stacked)

Ingestion Traffic

■ POP Relays accepts around 100k events/sec at regular day peak and rejects
around 40k/sec

■ Processing relays process around 150k events/sec at regular day peak
■ Global Ingestion-Level Load Balancers see around 200k req/sec at regular

peak

Processing Side

“Processing”
Relay

Kafka RabbitMQ Kafka

Postgres

Clickhouse

Bigtable

Kafka Traffic

■ All relay traffic makes it to different Kafka topics
■ Important ones by volume:

● Sessions/Metrics
● Transactions
● Error events
● Attachments

■ Based on these event types, initial routing happens
■ The biggest challenge are error events

Error Event Routing

■ Ahead of time, little information is available to determine how long an event
will take

■ Cache status can greatly affect how long it takes
● JavaScript event without source maps can take <1ms
● JavaScript event that requires fetching of source maps can take 60sec or more
● Native events might pull in gigabytes of debug data, that’s not yet hot

■ A lot of that processing still happens in legacy monolith

The Issue with Variance

Head of Line Blocking within Partition

Fast
Event

Slow
Event

Fast
Event

Fast
Event

Our Queues: Kafka and RabbitMQ

■ Kafka has inherent head-of-line blocking
■ Our Python consumers have language limited support for concurrency
■ Writing a custom broker on top of Kafka carries risks
■ Historically our answer was to dispatch from Kafka to Rabbit for high variance

tasks

We’re Not Happy with RabbitMQ

■ As our scale increases, we likely will move to Kafka entirely
■ This switch will require us to build a custom broker
■ So far the benefits of that have not yet emerged
■ It works good enough for now™

Tasks on RabbitMQ

■ Tasks travel on RabbitMQ queues
■ Event payloads live in redis
■ Python workers pick up tasks as they have capacity available
■ Problem: polling workers

Polling Workers

■ Some tasks poll the internal symbolicator service
■ For that a Python worker dispatches a task via HTTP to the stateful

symbolicator service
■ Python worker polls that service until result is ready which can be minutes
■ Requires symbolicators to be somewhat evenly configured and loaded

Polling
Worker

Symbolicator

Next
Task

wn

sn

Incident: Symbolicator Tilt

■ Fundamental flaw: tasks are pushed evenly to symbolicators
■ Not all symbolicators respond the same
■ A freshly scaled up symbolicator has cold caches
■ This caused scaling up to have a negative effect on processing times
■ Workaround: cache sharing
■ Long term plan: symbolicator picks up directly from RabbitMQ or Kafka

Hot
Symbolicator

Cold
Symbolicator

10 tasks/sec

10 tasks/sec

2 results/sec

10 results/sec

Backpressure Control

Implicit Backpressure Control

■ Our processing queue has insufficient backpressure control
■ At the head of the queue we permit almost unbounded event accumulation
■ Pausing certain parts of the pipeline can cause it to spill too fast into

RabbitMQ (goes to swap)

Deep Load Shedding

Pipeline Kill-Switches

■ Problem: for some reason bad event data makes it into the pipeline
■ Due to volume we cannot track where the data is in the pipe and we likely

can’t reliably prevent it from propagating further
■ Solution: flexible kill-switches
■ Drop events that match a filter wherever that filter is applied

Loading Kill-Switches

sentry killswitches pull \

 store.load-shed-group-creation-projects \

 new-rules.txt

Before: <disabled entirely>

After:

 DROP DATA WHERE

 (project_id = 1) OR

 (project_id = 2) OR

 (project_id = 3)

Should the changes be applied? [y/N]: y

Look into Relay

Communication Channels

■ Relay to Relay: HTTP
■ Relay to Processing Pipeline: Kafka
■ Relay state updates:

● Relay -> Relay via HTTP
● Relay to Internal HTTP and direct redis cache reads

Project Config Caches

■ Innermost relays fetch config directly from Sentry
■ Sentry itself persists latest config into redis
■ Relay will always try to read from that shared cache before asking Sentry

Proactive Cache Writing

■ We used to expire configs in cache liberally
■ Now most situations will instead proactively rewrite configs to cache

Brought to you by

Armin Ronacher

armin@sentry.io

@mitsuhiko

mailto:armin@sentry.io

