P99 CONF

Overcoming Variable Payloads
to Optimize for Performance

 Armin Ronacher
& Principal Architect at Sentry



Armin Ronacher
Principal Architect at Sentry

m Creator of Flask, Werkzeug, Jinja and many Open Source libs

m Keep things running at Sentry, make event processing go vroom

m Gotto learn to love event processing pipelines

= Juggling three lovely kids

A\ SENTRY

P99 CONF



Why Are We Here?

P99 CONF



Sentry Generates, Processes and Shows Events

Issues >
& AllUnresolved 252 For Review @) Ignored v
a [ My Projects v B AuEnv v £ 14D v X 5
v
5 T Last Seen v GRAPH 24h 14d EVENTS USERS ASSIGNEE
Error f dTestsScreen)
& Unhandled Promise Rejection 65 65 & S
(o] SENTRY-REACT-NATIVE-97 (© 17min ago | 7mo old
O Dpashboards =
[I(: Dashboard Error onPress(src/screens/End \dTests:
% Profilin captureException test 65 65 8, v
SENTRY-REACT-NATIVE-96 (D 18min ago | 7mo old
g v
React Native Test Message
i o 98 98 & v
SENTRY-REACT-NATIVE-8E (D 18min ago | 9mo old
B Error apply(native)
Thrown Error 3 1. & v
SENTRY-REACT-NATIVE-4A 2 Unhand (® 27min ago | 15mo old

B O Error onPi

Thrown Error ik 1 & v
SENTRY-REACT-NATIVE-5Y 5min ago | 12mo old

ndex)

Error anonymou EndToEnc

Unhandled Promise Rejection 37 37 & v
SENTRY-REACT-NATIVE-93 (D 37min ago | 7mo old

Ervor: onP s/EndToEnd

creen)

P99 CONF



Sentry Generates, Processes and Shows Events

System Produc. w NVIDIA GeF...
SCREENSHOT ° Oefcedaf9e413.. Y |
Model: System Prod... nvibia. Vendor: NVIDIA
LAST 24 HOURS
TAGS 0
device em Product Name ( tem manufacturer) environment  production
gpu.name NVIDIA GeForce GTX 1880 gpuvendor NVIDIA handled no level error
LAST 30 DAYS
mechanism Unity.LogExce os Windows 10 os.name Windows 8
release (8da87ba75977) unity.device.device_type Desktop  unity.gpu.supports_instancing
.
unity.install_mode  Unknown unity.is_main_thread | true
- user id:@efceda 33441bb379826b5Fb1de EASTSEEN
View screenshot 7 days agoin release 0.1 (fc89f1a80c41)
FIRST SEEN
EXCEPTION Full stack trace 32 Options v 2 months agoin release 0.1
System.NullReferenceException ESUETRACKNS
Object reference not set to an instance of an object. Track this issue in Jira, GitHub, etc. >
mechanism  Unity.LogException  handled | false
Tags
ThreadingSamples+<>c in ThrowNull { <lambda>} at line 18 7 device 1S-7D25 (Micro-Star Inte.. 5%
14. environment production 55%
15.  public void AssertFalse() = Assert.AreEqual(true, false); G 2 )
18 gpu.name Intel(R) UHD Graphics 770 55%
7 [MethodImpl(MethodImplOptions.NoInlining)] SE—— P
18, public void Throwull() => throw nul -
19. handled no 100%
20, LIS VoL TR SHEXGSPELORNRACHECHTY . ]
level error 100%
2. | . ]
22. Debug.Log("Throwing an instance of % CustomException!"); mechanism Unity.LogException 100%
23. ——
Assembly: Assembly-CSharp  Version: 0.0.0.0 Culture: neutral PublicKeyToken: null  path: as\unity-of-bugs\Assets\Scripts\BugFarmButtons.cs os Windows 11 565%
— |

P99 CONF



Sentry Events

= Session Updates
= lransaction Events
= Metrics

= Reports
e Messages
Structured Processed Crash Reports
Structured Unprocessed Crash Reports
Minidumps
Third Party Crash Formats
User Feedback
Profiles
Attachments
Client Reports

P99 CONF



Challenges

= Users want crash reports with low latency

= Variance of processing times of events from 1Tms to 30 minutes

= How long an event takes, is not always known ahead of time

= What happens at the end of the pipeline can affect the beginning of it

= Part of the pipeline is an Onion that can extend closer and closer to the user

P99 CONF



Conservative Changes

P99 CONF



Touching Running Systems

= Sentry processes complex events from many sources
= Any change (even bugfix) can break someone’s workflow
= We are treating very carefully

Things we try to avoid doing:

= Bumping Dependencies without reason
= Rewriting services as busywork

That doesn't mean we don't change the pipeline, but we are rather conservative.

P99 CONF



Terms and Things

P99 CONF



“The Monolith”

= Written in Python

= A massive and grown Django app

= Uses celery and rabbitmgq historically for all queue needs
= Still plays a significant role in the processing logic

= Uses CFFIl to invoke some Rust code

P99 CONF



Relay

= Written in Rust

= Ouringestion component

= Layers like an onion

= Stateful

= First level quota enforcement
= Aggregation

= Data normalization

= Pll stripping

P99 CONF



Symbolicator

= Written in Rust

= Handles Symbolication
o PDB

PE/COFF

DWARF

MachO

ELF

WASM

o IL2CPP

= Fetches and Manages Debug Information Files (DIFs)

e External Symbol Servers
e Internal Sources

P99 CONF



Ingest Consumer

= Shovels Pieces from the Relay supplied Kafka stream onwards

e Events

e User Reports

e Attachment Chunks
e Attachments

= Does an initial routing of events to the rest of pipeline

P99 CONF



What's Flowing?

P99 CONF



Ingestion Side

Rate Limits Project Config

Enveloee - m Enveloee -
Event / N\
Other

SDK Relay Sentry

(relays can be and are stacked)

P99 CONF



Ingestion Traffic

= POP Relays accepts around 100k events/sec at regular day peak and rejects
around 40k/sec

= Processing relays process around 150k events/sec at regular day peak

= Global Ingestion-Level Load Balancers see around 200k req/sec at regular

peak

P99 CONF



Processing Side

Chckhouse
§€ ” HI ” §€

RabbitMQ

P99 CONF



Kafka Traffic

= All relay traffic makes it to different Kafka topics

= Important ones by volume:
e Sessions/Metrics
e Transactions
e Errorevents
e Attachments

= Based on these event types, initial routing happens
= The biggest challenge are error events

P99 CONF



Error Event Routing

= Ahead of time, little information is available to determine how long an event
will take

= Cache status can greatly affect how long it takes

e JavaScript event without source maps can take <1ms
e JavaScript event that requires fetching of source maps can take 60sec or more
e Native events might pull in gigabytes of debug data, that’s not yet hot

= Alot of that processing still happens in legacy monolith

P99 CONF



The Issue with Variance

P99 CONF



Head of Line Blocking within Partition

P99 CONF




Our Queues; Kafka and RabbitMQ

= Kafka has inherent head-of-line blocking

= Our Python consumers have language limited support for concurrency

= Writing a custom broker on top of Kafka carries risks

= Historically our answer was to dispatch from Kafka to Rabbit for high variance

tasks

P99 CONF



We're Not Happy with RabbitMQ

= As our scale increases, we likely will move to Kafka entirely
= This switch will require us to build a custom broker

= So far the benefits of that have not yet emerged

= It works good enough for now™

P99 CONF



Tasks on RabbitMQ

= Tasks travel on RabbitMQ queues

= Event payloads live in redis

= Python workers pick up tasks as they have capacity available
= Problem: polling workers

P99 CONF



Polling Workers

= Some tasks poll the internal symbolicator service

= For that a Python worker dispatches a task via HTTP to the stateful
symbolicator service

= Python worker polls that service until result is ready which can be minutes
= Requires symbolicators to be somewhat evenly configured and loaded

-
sn
A

wn

P99 CONF




Incident: Symbolicator Tilt

= Fundamental flaw: tasks are pushed evenly to symbolicators

= Not all symbolicators respond the same

= A freshly scaled up symbolicator has cold caches

= This caused scaling up to have a negative effect on processing times

= Workaround: cache sharing

= Long term plan: symbolicator picks up directly from RabbitMQ or Kafka

10 tasks/sec

- =
P
10 results/sec

10 tasks/sec
>

P99 CONF



Backpressure Control

P99 CONF



Implicit Backpressure Control

= Our processing queue has insufficient backpressure control

= At the head of the queue we permit almost unbounded event accumulation

= Pausing certain parts of the pipeline can cause it to spill too fast into
RabbitMQ (goes to swap)

P99 CONF



Deep Load Shedding

P99 CONF



Pipeline Kill-Switches

= Problem: for some reason bad event data makes it into the pipeline

= Due to volume we cannot track where the data is in the pipe and we likely
can't reliably prevent it from propagating further

= Solution: flexible kill-switches

= Drop events that match a filter wherever that filter is applied

P99 CONF



Loading Kill-Switches

sentry killswitches pull \
store.load-shed-group-creation-projects \
new-rules.txt

Before: <disabled entirely>
After:

DROP DATA WHERE
(project_id = 1) OR
(project_id = 2) OR
(project_id = 3)

Should the changes be applied? [y/N]:

P99 CONF



Look into Relay

P99 CONF



Communication Channels

= Relay to Relay: HTTP
= Relay to Processing Pipeline: Kafka

= Relay state updates:

e Relay ->Relay via HTTP
e Relay to Internal HTTP and direct redis cache reads

P99 CONF



Project Config Caches

= Innermost relays fetch config directly from Sentry
= Sentry itself persists latest config into redis
= Relay will always try to read from that shared cache before asking Sentry

Projects requested per request (Sentry POV) Memory project cache hit/miss
60

40 1e5
30
Te4
20
1e3
10
P e e . ‘ ‘ : ‘ ‘
09:00 12:00 15:00 18:00 21:00 Fri5 03:00 06:00 12:00 Wed 3 12:00 Thu 4 12:00 Fri5
max:sentry.relay_project_co... avg:sentry.relay_project_con... @ max:sentry.relay_project_co... +1 @ sum:relay.project_cache.hit{*}.as_rate() @ sum:relay.project_cache.miss{*}.as_rate()

P99 CONF



Proactive Cache Writing

= We used to expire configs in cache liberally
= Now most situations will instead proactively rewrite configs to cache

Projects requested per request (Sentry POV)
60

Max Projects
50
40

30 H

20 j\ R

[ |
| A
T A P .\ AW AV b ~ A

max:sentry.relay_project_co... avg:sentry.relay_project_con... @ max:sentry.relay_project_co... +1

P99 CONF



Armin Ronacher
armin@sentry.io

@mitsuhiko



mailto:armin@sentry.io

