
Happiness Through Ignorance
a presentation by Armin Ronacher

for PyCon Japan 2012

@mitsuhiko
http://lucumr.pocoo.org/

http://lucumr.pocoo.org
http://lucumr.pocoo.org


About the Name
mitsuhiko: name is from the Detective Conan Manga

I don't actually speak Japanese :-(



Foreword
Take everything with a grain of salt

… and that includes this talk



Why Happiness Matters
and why I talk about happiness



Happiness
There is no value in doing something you don't like.
It might work for a while, but you will get grumpy



Happy People are Productive People
If you like your work you are willing to work overtime
Without happiness there would be no Open Source



We Love Python
Many of us are using Python because it makes us happy

(or at least happier than the alternatives)



Why Ignorance Matters
and why being ignorant can be important



Ignorance
We start out ignorant



Education
When we're learning we become less ignorant …



Education
… start learning more and more …



Education
… explore less …



Education
… worry more.



Ignorance is Bliss
Ignorance & dedication gets you far



Wolfire
Indie Game Developer

(known for running the humble indie bundles)



Lugaru
Wolfire's first successful indie game

eventually open sourced under the GPL license



Lugaru

Screenshot from Lugaru



Overgrowth

Screenshot from Overgrowth
(their current game)



void Screenshot(void)
 // Make an FSSpec
 static char buf[256];
 if(numscreenshots==0){
    buf[0]=26;
    buf[1]=':';
    buf[2]='S';
    buf[3]='c';
    buf[4]='r';
    buf[5]='e';
    buf[6]='e';
    buf[7]='n';
    /* ... */
    buf[26]='0';
    }



void Game::Tick()
{
    declare 40 variables;
    handle network messages;
    handle keyboard input;
    handle main menu code;
    handle all menu pages;
    handle game saving;
    handle game loading;
    handle game sounds;
    handle player movements;
    handle collisions;
    handle attacks;
    handle screenshots;
}



Game Ticks
Executed every frame

one function with 10000 lines of C++ code
up to 12 levels of indentation



Dedication
Instead of not doing it

They did it
They made a successful game



Too Much Information
humanity knows so much



I want to make a website
HTML, XHTML, CSS, JavaScript, Python, PHP, Ruby, Templates, Flask, Django, CodeIgnitor, XML, Ruby on Rails, 

node.js, OpenID, OAuth, Facebook Connect, bcrypt, SSH, SHA1, FTP, HTTP, SPDY, Puppet, Chef, Salt, Backbone JS, 
MD5, Flash, jQuery, Dojo, DOM, XPath, XInclude, XSLT, Jinja, Genshi, i18n, l10n, unicode, utf-8, MIME, email, 

websockets, server side events, pubsub, pubsubhubbub, Atom, RSS, …



Where do you even start?
It's increasingly difficult to learn things
people tell you to learn Technology X

when you're done, X gets replaced with Y



Step by Step
You start somewhere and go small steps from there



Quick Iteration
every small step is a achievement



Learn to love and hate
instead of taking hackernews' word that PHP sucks

you can learn it first hand



A Healthy Balance
Ignorance requires a healthy balance

start ignorant — don't end there



Cargo Cult Programming
“why didn't you?“



“Why didn't you use X?”
Chances are that if you present something you did

someone will ask why you didn't do it with
technology X instead of Y



But it's O(n)!
There is theory and there is practice

Something that's slow in theory could still be
a valid solution in practice



Infinite is a lie
n often really is a constant

think about it



Scripting languages are slow
Can't program computer games in it

Unreal Engine 3 has considerable amount written in Unreal script



Complexity kills Happiness
Examples from the real world



SOAP
Simple Object Access Protocol



SAML 2.0
Security Assertion Markup Language



SAML 2.0
… is an XML-based open standard for exchanging authentication and 

authorization data between security domains, that is, between an identity 
provider and a service provider.

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Authorization
http://en.wikipedia.org/wiki/Authorization
http://en.wikipedia.org/wiki/Security_domain
http://en.wikipedia.org/wiki/Security_domain
http://en.wikipedia.org/wiki/Identity_provider
http://en.wikipedia.org/wiki/Identity_provider
http://en.wikipedia.org/wiki/Identity_provider
http://en.wikipedia.org/wiki/Identity_provider
http://en.wikipedia.org/wiki/Service_provider
http://en.wikipedia.org/wiki/Service_provider


Specification Breakdown
SAML 2.0, XML, XPath, XPath Filter 2.0, XPointer, XLST, HTTP, XMLENC, X509, 

XMLDSIG, Canonical XML



This is no Sign-in protocol
… it's a way to make money of SAML because barely anyone has the 

resources to implement it securely



SSO 101
Shared Secret + HMAC + encapsulated payload



SSO 101
import hashlib, hmac, json

class BadSignature(Exception):
    pass

def get_signature(payload):
    m = hmac.new(SHARED_SECRET, digestmod=hashlib.sha1)
    m.update(payload)
    return m.hexdigest()

def sign(payload):
    payload = json.dumps(payload)
    return get_signature(payload) + '.' + payload

def get_payload(data):
    if '.' not in data:
        raise BadSignature()
    signature, payload = data.split('.', 1)
    verify_sig = get_signature(payload)
    if verify_sig != signature:
        raise BadSignature()
    return json.loads(payload)



Is it secure?
For as long as you have a long secret key which you don't lose.

Takes 10 minutes to implement and is easy to understand.
Would you know if SAML is secure?



Pluggable Applications
All the over-engineering in the WSGI community in the end

just gave us systems that look like J2EE.
Meanwhile Django has a global settings module and is popular



PHP
Barely a programming language, but hugely successful.
No consistent language design but fast iteration speeds.



C
No namespaces, no OOP, not functional, no type safety, bad standard library,

worst string type, theoretically hard to optimize, no form of GC —
the pillar of modern software development



Personal Guidelines
things I follow because I think they make sense



Disclaimer
Personal experience

I have not nearly done enough to tell others what to do



Learn Asking Questions
And then ask the right ones

I notice many times (on myself and others) that we ask the wrong questions



Avoid Global State
Just avoid it.  It's easy to do.

If you think the API suffers consider thread/context locals.
But really. Avoid global state.



Refactor often
At the end of an iteration/milestone go over the code

and try to see if implementation can be simplified



Examples First
I always write APIs and I start with the examples.

Often shows when something does not make sense.



Q&A
http://fireteam.net/ — Armin Ronacher — @mitsuhiko

http://fireteam.net
http://fireteam.net

