
Opening the Flask
How an April Fools’ Day

Joke became a Framework
with Good Intentions

file://localhost/Users/mitsuhiko/Development/flask/artwork/logo-full.svg
file://localhost/Users/mitsuhiko/Development/flask/artwork/logo-full.svg
file://localhost/Users/mitsuhiko/Development/flask/artwork/logo-full.svg
file://localhost/Users/mitsuhiko/Development/flask/artwork/logo-full.svg

About Me

✤ My name is Armin Ronacher

✤ Part of the Pocoo Team

✤ @mitsuhiko on Twitter/github/bb

✤ http://lucumr.pocoo.org/

http://lucumr.pocoo.org
http://lucumr.pocoo.org

It started as a Joke

Motivation

✤ web2py / bottle / web.py

✤ “single file framework”

✤ “web scale”

✤ NoSQL

✤ screencast

The Story

✤ by Eirik Lahavre

✤ Entirely made up

✤ Jinja2 + Werkzeug zipped

✤ “Impressive Scaling Capabilities”

✤ RESTful

What I learned

✤ Nobody has time to properly test
the framework and read the code

✤ Marketing beats Quality

✤ Features don't matter

✤ Does not have to be new

Good Intentions

✤ Be Honest

✤ Don't reinvent things

✤ Stay in Touch with Others

✤ Document shortcomings

Enter Flask

✤ Wordplay on Bottle, probably a
mistake

✤ based on Jinja2 and Werkzeug

✤ tons of documentation

✤ “best of breed” code

✤ document shortcomings

Some Numbers

✤ 800 LOC Code

✤ 1500 LOC Tests

✤ 200 Pages of Documentation

µ?

✤ Flask depends on Werkzeug, Jinja2
and optionally Blinker

✤ There is also a
Kitchensink release
that includes Flask
and deps to drop
next to your Project.

Hello Flask

from flask import Flask

app = Flask(__name__)

@app.route('/')
def index():
 return 'Hello Flask!'

if __name__ == '__main__':
 app.run()

Hello Flask

Fighting the Python

✤ No import time side effects

✤ Explicit application setup

✤ Circular imports

✤ Cached Imports

Why not like this?

from flask import route, run

@route('/')
def index():
 return 'Hello Flask!'

if __name__ == '__main__':
 run()

Explicit Setup

✤ Applying WSGI middlewares

✤ More than one app

✤ Testing

✤ Setup app in function

Import Order

✤ Larger projects: module seem to
import in arbitrary order

✤ URL rules are attached to functions

✤ Routing system has to
reorder them intelligently

Power and Simplicity

def wsgi_app(self, environ, start_response):
 with self.request_context(environ):
 rv = self.preprocess_request()
 if rv is None:
 rv = self.dispatch_request()
 response = self.make_response(rv)
 return response(
 environ, start_response)

Simple Things Simple
import sqlite3
from flask import g

DATABASE = '/path/to/database.db'

@app.before_request
def before_request():
 g.db = sqlite3.connect(DATABASE)

@app.after_request
def after_request(response):
 g.db.close()
 return response

Extensions

✤ Addons for Flask go into dedicated
extensions.

✤ Core stays small

✤ SQLAlchemy, Babel, Genshi,
CouchDB, MongoDB, etc.

Questions?

Legal

© Copyright 2011 by Armin Ronacher
http://lucumr.pocoo.org/ — @mitsuhiko

Content licensed under the Creative Commons attribution-
noncommercial-sharealike License. Images rasterized from images
from Wiki Commons (http://commons.wikimedia.org/) and public
domain sources. Individual copyrights apply.

http://lucumr.pocoo.org
http://lucumr.pocoo.org
http://commons.wikimedia.org
http://commons.wikimedia.org

