
… we gave a mouse an NDK
some non android developers'
experience with NDK

Bruno Garcia  
Senior Software Engineer, Sentry
@brungarc

Armin Ronacher  
Director of Engineering, Sentry
@mitsuhiko



our NDK experience was a bit of 
an unexpected rabbit hole





let's talk about us



we're a stack trace company





Armin
Ronacher

Director of Engineering

@mitsuhiko

Python & Rust Developer



Bruno 
Garcia

Senior Software Engineer

@brungarc

.NET Developer





what do we have to do with 
Android anyways?



You probably know Android 
better than we do



But we know quite a few things 
about crash reporting



The goal: stack traces for C, C+
+, Java, Kotlin, …



NDK



// Optional footer, delete it if you do not need it15

CONFIDENTIAL

What NDK is
NDK gives us native (C/C++/etc.) code on Android

It interacts heavily with the JVM (ART) via JNI

Android NDK's environment is Linux-ish



// Optional footer, delete it if you do not need it16

CONFIDENTIAL

NDK Components
What's it based on:

Bionic for libc

some hand picked common libraries (zlib)



we already did Java, we already 
did C++, …

but we didn't do NDK.



Production
Crash Reporting



Production Crash Reporting
is Fighting a Paradigm



// Optional footer, delete it if you do not need it20

CONFIDENTIAL

Production Crash 
Reporting
Performance and debuggability are often at odds

The lower level the language, the higher the disparity 
between debug and production build performance

The performance gains come at cost of debuggability



production is all that matters
(for us)



Production on Android



The Runtimes



“Java Runtime”
&

“C Runtime”



// Optional footer, delete it if you do not need it25

CONFIDENTIAL

Java Runtime
Android Runtime

Runs via some layers of indirection Java bytecode. 
Resembles mostly what you get on a traditional JVM.

Specifically you get stack traces from the runtime 
system from every exception thrown



// Optional footer, delete it if you do not need it26

CONFIDENTIAL

C Runtime
Very low level, bare minimums.
 
Interactions with Java via JNI

No native support for producing useful stack 
traces, dozens of different unwinders for Android 
non built-in that are good.



Stack Traces



// Optional footer, delete it if you do not need it28

CONFIDENTIAL

Readable Java 
Stack Traces
Proguard/R8 obfuscation make stack traces 
unreadable

Mapping files can be used to resolve method 
names in stack traces back to the original names.



// Optional footer, delete it if you do not need it29

CONFIDENTIAL

Readable C Stack 
Traces
A whole different ballpark.

DWARF information is generally used to restore 
location information and method names in stack 
traces once we have them

To get them in the first place is tricky



turning numbers and funny strings 
into stuff humans can comprehend



Java is easy because Java stack 
traces are good



Proguard mappings:

a.b.c:2 -> was.WeirdThing.method



class name:    a.b.C      ->       io.sentry.FooBar
method name:   a          ->       doSomeFoo
line number:   42



Preventing Obfuscation



-keep public class * extends java.lang.Exception
-keep class com.example.myapp.MyBridge { *; }



But C …



How do we get a stack trace?



Crash Extract 
Stacktrace Symbolicate Render

Unwind Info Debug Info



github.com/getsentry/symbolicator



stack walk or memory dump?



the problem of unwinding



high address

low address

parent 
frames

var1  
var2  
… 

return address
saved register 

…

base pointer

stack pointer



Source
Code

Executable

Debug
File

Crash

compile

distribute

upload Debugger



unwinding memory dumps









okay … so what can we do?



stack walk on device



// Optional footer, delete it if you do not need it50

CONFIDENTIAL

stackwalkers
libcorkscrew
    deprecated, 32bit only

libunwind
    deprecated, google provides android patches

libunwindstack
    C++ monstrosity, actively maintained



// Optional footer, delete it if you do not need it51

CONFIDENTIAL

libunwindstack
requires custom patches to compile with NDK

requires large sigaltstack to not overflow the stack 
in the signal handler

development in android master deviated from 
most NDK compatible forks



// Optional footer, delete it if you do not need it52

CONFIDENTIAL

gief stackwalker
android can already stackwalk (see ndk-stack)

why is the stack walker not exposed to us?



// Optional footer, delete it if you do not need it53

CONFIDENTIAL

build id and image 
addresses
now we need the GNU build id and the image offset for 
each loaded executable / dynamic library

normally one would use dl_iterate_phdr

this one is missing on older NDKs,

Workaround: parse /proc/self/maps



00400000-0040b000 r-xp 00000000 08:01 36                     /bin/cat
0060a000-0060b000 r--p 0000a000 08:01 36                     /bin/cat
0060b000-0060c000 rw-p 0000b000 08:01 36                     /bin/cat
0161f000-01640000 rw-p 00000000 00:00 0                      [heap]
7f01ec015000-7f01ec1d3000 r-xp 00000000 08:01 48677          /lib/x86_64-linux-gnu/libc-2.19.so
7f01ec1d3000-7f01ec3d3000 ---p 001be000 08:01 48677          /lib/x86_64-linux-gnu/libc-2.19.so
7f01ec3d3000-7f01ec3d7000 r--p 001be000 08:01 48677          /lib/x86_64-linux-gnu/libc-2.19.so
7f01ec3d7000-7f01ec3d9000 rw-p 001c2000 08:01 48677          /lib/x86_64-linux-gnu/libc-2.19.so
7f01ec3d9000-7f01ec3de000 rw-p 00000000 00:00 0
7f01ec3de000-7f01ec401000 r-xp 00000000 08:01 48672          /lib/x86_64-linux-gnu/ld-2.19.so
7f01ec46a000-7f01ec5f3000 r--p 00000000 08:01 9746           /usr/lib/locale/locale-archive
7f01ec5f3000-7f01ec5f6000 rw-p 00000000 00:00 0
7f01ec600000-7f01ec601000 r--p 00022000 08:01 48672          /lib/x86_64-linux-gnu/ld-2.19.so
7f01ec601000-7f01ec602000 rw-p 00023000 08:01 48672          /lib/x86_64-linux-gnu/ld-2.19.so
7f01ec602000-7f01ec603000 rw-p 00000000 00:00 0
7ffd808de000-7ffd808ff000 rw-p 00000000 00:00 0              [stack]
7ffd80950000-7ffd80953000 r--p 00000000 00:00 0              [vvar]
7ffd80953000-7ffd80955000 r-xp 00000000 00:00 0              [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0      [vsyscall]



sigaltstack / async safety



static const size_t SIGNAL_STACK_SIZE = 65536;
stack_t g_signal_stack;

g_signal_stack.ss_sp = malloc(SIGNAL_STACK_SIZE);
g_signal_stack.ss_size = SIGNAL_STACK_SIZE;
g_signal_stack.ss_flags = 0;
sigaltstack(&g_signal_stack, 0);



all we want is a symbol server



Putting it Together



// Optional footer, delete it if you do not need it59

CONFIDENTIAL

NDK side
sentry-native
> SDK hooks signal handler
> enumerate loaded images
> dump state to disk before crash
   - stack walk with libunwindstack



// Optional footer, delete it if you do not need it60

CONFIDENTIAL

SDK side
sentry-android
> watches file system for new events
> deserializes them, enhances them and uploads



// Optional footer, delete it if you do not need it61

CONFIDENTIAL

Server side
> process crash reports
  - symbolicate native stacks on symbolicator
  - check for well known symbols in our buckets
  - resolve proguard for java stacks
> store



Shipping It



Android Gradle Plugin :'(



// Optional footer, delete it if you do not need it64

CONFIDENTIAL

Structure
> cmake builds libraries per platform
  - these end up in folders for each architecture

where do the headers go?
how do we link to the libraries?



// Optional footer, delete it if you do not need it65

CONFIDENTIAL

Do The Ugly 
Dance
> needs a gradle plugin to
  - copy header libs out of AAR :(
  - so that code can link against the native lib

github.com/android/ndk-samples/issues/261
https://github.com/android/ndk/issues/916

http://github.com/android/ndk-samples/issues/261
https://github.com/android/ndk/issues/916


Improving It



// Optional footer, delete it if you do not need it67

CONFIDENTIAL

NDK asks
> a maintained and included stack walker
> make ucontext_t/getcontext available
> add support for shipping libs/headers in AARs
> Have OEMs/Google provide symbol servers



sentry.io / @getsentry / @mitsuhiko / @brungarc

Q&A

http://sentry.io

