A\ SENTRY

... We gave a mouse an NDK

Armin Ronacher
Director of Engineering, Sentry

@mitsuhiko

Bruno Garcia
Senior Software Engineer, Sentry

@brungarc

our NDK experience was a bit of
an unexpected rabbit hole

let's talk about us

SSSSSS

we're a stack trace company

EXC_BAD_ACCESS / KERN_INVALID_ADDRESS
Fatal Error: EXC_BAD_ACCESS / KERN_INVALID_ADDRESS

mechanism | minidump handled no

example_cra.. 0x0001024a8aaa initialize_memory (../examples/example_crashpad.c:14)

12. void initialize_memory(char *mem) {

13. sentry_add_breadcrumb(sentry_value_new_breadcrumb(@, "Initializing memory"));
14 . memset(mem, 1, 100);

15. }

registers r114 0x0000000000000000 r115 0x0000000000000000

example_cra.. 0x0001024a8a8a startup (../examples/example_crashpad.c:29)

example_cra.. 0x0001024a8ce3 main (../examples/example_crashpad.c:66)

Called from: libdyld <unknown> ®

A\ SENTRY

Director of Engineering

@mitsuhiko

Ronacher

Python & Rust Developer

A\ SENTRY

Senior Software Engineer
@brungarc

NET Developer

A\ SENTRY

A Y4

N\

v

, 1}.‘{ v‘ . N
&%&'2&!‘ o :.
Y

A

\\ .! P
A\

A

Joshn

what do we have to do with
Android anyways?

You probably know Android
petter than we do

But we know gquite a few things
about crash reporting

The goal: stack traces for C, C+
+, Java, Kotlin, ...

VWhat NDK IS

NDK gives us native (C/C++/etc.) code on Android
It interacts heavily with the JVM (ART) via JNI

Android NDK's environment is Linux-ish

NDK Components

What's it based on:
Bionic for libc

some hand picked common libraries (zlib)

we already did Java, we already
did C++, ...

but we didn't do NDK.

Production
Crash Reporting

SSSSSS

Production Crash Reporting
IS Fighting a Paradigm

Production Crash
Reporting

Performance and debuggability are often at odds

The lower level the language, the higher the disparity
between debug and production build performance

The performance gains come at cost of debuggability

production Is all that matters

(for us)

Production on Android

The Runtimes

SSSSSS

“Java Runtime”

&
“C Runtime”

Java Runtime

Android Runtime

Runs via some layers of indirection Java bytecode.
Resembles mostly what you get on a traditional JVM.

Specifically you get stack traces from the runtime
system from every exception thrown

C Runtime

Very low level, bare minimums.
Interactions with Java via JNI
No native support for producing useful stack

traces, dozens of different unwinders for Android
non built-in that are good.

Stack Traces

SSSSSS

Readable Java
Stack Traces

Proguard/R8 obfuscation make stack traces
unreadable

Mapping files can be used to resolve method
names in stack traces back to the original names.

Readable C Stack
Traces

A whole different ballpark.

DWARF information is generally used to restore
location information and method names in stack
traces once we have them

To get them In the first place is tricky

turning numbers and funny strings
iInto stuff humans can comprehend

Java IS easy because Java stack
traces are gooad

Proguard mappings:

a.b.c:2 -> was.WeirdThing.method

class name: a.b.C -> j0.sentry.FooBar
method name: a -> doSomeFoo
line number: 42

Preventing Obfuscation

-keep public class * extends java.lang.Exception
-keep class com.example.myapp.MyBridge { *; }

But C ...

How do we get a stack trace?

Extract
Stacktrace

Symbolicate Render

Unwind Info Debug Info

o et

github.com/getsentry/symbolicator

stack walk or memory dump?

the problem of unwinding

high address

>

base pointer

return address

>

stack pointer

v

low address

Executable distribute

Source

Code compile

upload Debugger

unwinding memory dumps

& # | Jane Manchun Wong v
v § @wongmjane

Facebook can upload the entire files of all system libraries
to their server through their Android apps

The app compresses each system library file using gzip
and uploads them to server

Interestingly, the files are uploaded to a specific collection
that's related to my phone

PosT /INEREINZEE HTTP/1.1

Authorization: OAuth [redacted my access token]
X-FB-Friendly-Name: Upload library to GLC

Host: graph.facebook.com

Content-Type: multipart/form-data; boundary=xxxx
Content-Length: 692804

// @wongmjane Uploads the system library

——XXXX from the phone to Facebook server
Content-Disposition: form-data; name="filetype"
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

T

—=XRAXX

Content-Disposition:

form-data; name="1lib"; filename="libsqlite.so.gz"
Content-Type: application/octet-streanm
Content-Transfer-Encoding: binary

06066061 {\TA?pea~P

okay ... so what can we do?

stack walk on device

stackwalkers

libcorkscrew
deprecated, 32bit only

libunwind
deprecated, google provides android patches

libunwindstack
C++ monstrosity, actively maintained

libunwindstack

requires custom patches to compile with NDK

requires large sigaltstack to not overflow the stack
In the signal handler

development in android master deviated from
most NDK compatible forks

gief stackwalker

android can already stackwalk (see ndk-stack)

why is the stack walker not exposed to us?

build iId and image
addresses

now we need the GNU build id and the image offset for
each loaded executable / dynamic library

normally one would use dl_iterate_phdr
this one is missing on older NDKs,

Workaround: parse /proc/selt/maps

00400000-0040b000 r-xp 00000000 08:01 36 /bin/cat

0060a000-0060b000 r--p 00002000 08:01 36 /bin/cat
0060b000-0060c000 rw-p 0000000 08:01 36 /bin/cat
0161f000-01640000 rw-p 00000000 00:00 O lheap]

7f01ec015000-7f01ec1d3000 r-xp 00000000 08:01 48677 /lib/x86_64-linux-gnu/libc-2.19.s0
7f01ec1d3000-7f01ec3d3000 ---p 001be000 08:01 48677 /lib/x86_64-linux-gnu/libc-2.19.s0
7f01ec3d3000-7f01ec3d7000 r--p 001be000 08:01 48677 /lib/x86_64-linux-gnu/libc-2.19.s0
/7f01ec3d7000-7t01ec3d9000 rw-p 001c2000 08:01 48677 /lib/x86_64-linux-gnu/libc-2.19.s0
/f01ec3d9000-7f01ec3de000 rw-p 00000000 00:00 O

7f01ec3de000-7f01ec401000 r-xp 00000000 08:01 48672 /lib/x86_64-linux-gnu/ld-2.19.s0
/f01ec46a000-7f01ec5f3000 r--p 00000000 08:01 9746 /usr/lib/locale/locale-archive
7f01ec5f3000-7f01ec5f6000 rw-p 00000000 00:00 0

7f01ec600000-7f01ec601000 r--p 00022000 08:01 48672 /lib/x86_64-linux-gnu/Id-2.19.s0
7f01ec601000-7101ec602000 rw-p 00023000 08:01 48672 /lib/x86_64-linux-gnu/ld-2.19.s0
/7f01ec602000-7f01ec603000 rw-p 00000000 00:00 O

/ffd808de000-7fd808ff000 rw-p 00000000 00:00 O [stack]
/ffd80950000-7ffd80953000 r--p 00000000 00:00 O [vvar]
/ffd80953000-7ffd80955000 r-xp 00000000 00:00 O [vdso]

fifffif600000-ffffff601000 r-xp 00000000 00:00 0 [vsyscall]

sigaltstack / async safety

static const size_t SIGNAL_STACK_SIZE = 65536;
stack_t g_signal_stack;

g_signal_stack.ss_sp = malloc(SIGNAL_STACK_SIZE);
g_signal_stack.ss_size = SIGNAL_STACK_SIZE;
g_signal_stack.ss_flags = 0;
sigaltstack(&g_signal_stack, 0);

all we want Is a symbol server

Putting It Together

SSSSSS

NDK side

sentry-native

> SDK hooks signal handler

> enumerate loaded images

> dump state to disk before crash
- stack walk with libunwindstack

SDK side

sentry-android
> watches file system for new events
> deserializes them, enhances them and uploads

Server side

> process crash reports
- symbolicate native stacks on symbolicator
- check for well known symbols in our buckets
- resolve proguard for java stacks

> store

Shipping It

Android Gradle Plugin :'(

File

__ v

= -
o
|
<, s‘
~ V&\

X86
> libsentry.so
> libsentry-android.so

X86 64

Structure lbsents0 oidse

armo4-va8a |

> cmake builds libraries per platform o ib2enties
: : 5 lib -android.
- these end up in folders for each architecture At

armeabi-v7a
> libsentry.so
> libsentry-android.so

where do the headers go? > H classes.jar

_ _ _ proguard.txt
how do we link to the libraries? AndroidManifest.xml
R.txt
x86 64
X86
armeabi-v7a
arm64-va8a

WERABIIY l) tf)
/ ._ﬁ_;) i
RY &% .._ : —\ > shgl

B B

/

Do The Ugly
Dance

> needs a gradle plugin to
- copy header libs out of AAR (
- S0 that code can link against the native lib

github.com/android/ndk-samples/issues/261
https://github.com/android/ndk/issues/916

http://github.com/android/ndk-samples/issues/261
https://github.com/android/ndk/issues/916

Improving It

SSSSSS

NDK asks

> a maintained and included stack walker

> make ucontext_t/getcontext available

> add support for shipping libs/headers in AARs
> Have OEMs/Google provide symbol servers

A\ SENTRY sentry.io / @getsentry / @mitsuhiko / @brungarc

http://sentry.io

