
Things you didn't know about Python
a presentation by Armin Ronacher

for PyCon South Africa 2012

@mitsuhiko
http://lucumr.pocoo.org/

http://lucumr.pocoo.org
http://lucumr.pocoo.org

Things you didn't know about Python
a presentation by Armin Ronacher

for PyCon South Africa 2012

@mitsuhiko
http://lucumr.pocoo.org/

might already know
computers

http://lucumr.pocoo.org
http://lucumr.pocoo.org

Things you didn't know about Python
a presentation by Armin Ronacher

for PyCon South Africa 2012

@mitsuhiko
http://lucumr.pocoo.org/

might already know
computers

and the
world!!!11

http://lucumr.pocoo.org
http://lucumr.pocoo.org

Everything is horrible
and nobody cares

We're doomed

[Untitled]

Motivation for this Talk
Who am I and why this talk

Armin Ronacher
Software Engineer at Fireteam

Game Middleware Provider
@mitsuhiko / @fireteamltd

We're using Python
And not just us.

Python has been popular in parts of in the gaming industry

I'm also doing Python Libraries
and help people online using them.

What we can learn from
Wifi Hotspots

Starting Somewhere

Intended Login Mask

Down the Rabbit Hole

Served by Apache, PHP 5.3, Directory Listings

*.php_backup

source code? Check!
SQL Injection? Check

Further …

Register Globals? Check
Debug Comments? Check

And Further

GPL Violation? Check

Yay!

Pre generated voucher PDF? Check

To Round it all Up

Comes with Instructions

Priorities

It's not secure if it does not have XML

A Step Back
What do Wifi Hotspots have to do with anything?

Python is not perfect
… but the criticism is very high level

“First World Problems”
Most of our problems with Python are not stopping us from

using the language. It just might make it less pleasant.

Who is using Python?
Let's start with the marketing bits

Big Players
NASA, Disney, Youtube, Google, etc.

Trivia: Microsoft shipped Python in 96
Microsoft Merchant Server was written in Python in 1996

But really everybody
Python is one of the things that just shows up.

If for nothing else, then build scripts.

Trivia: Dropbox uses Python
Not just on the server, the client is also implemented in Python!

Gaming uses Python
Demonware, Agora, EA/ESN, Fireteam

Nobody got fired for choosing Python

We are the IBM of
Dynamic Languages

History Lessons
A few interesting bits about the past

1991: Where all started

• Exceptions

• Multiple Inheritance

• C inspired IO system

Trivia: string.py was horrible
It had O(n2) upper/lower functions

Trivia: what did this do until 2.5?
raise ((a, b), c), d

answer: raises exception a with value d

Trivia: mutex.py
a module called mutex

not actually a mutex
survived until 2.7

1995: The Huge Jump to 1.5

• Regular Expressions

• Exceptions as classes

• Built-in package support

• Embeddable

Trivia: did you know re is 50% python?
the regular expression compiler is written in Python

You notice that when you python -mtrace

Trivia: why are builtin types lowercase?
because they used to be functions

the types where in types.py
types.StringType was the type of a string (camelcase)

2000: Modern Python: Python 2.0

• Unicode Support

• Augmented assignments (+= etc.)

• Garbage Collector

• PEPs

2004: Python as you know it

• File encoding cookies

• Boolean types

• sets

• reverse iteration

• generator expressions

Trivia: 2.2.1 introduced True and False
… but no boolean type.

2.2.0: no true/false
2.3.0: real boolean type

Today: Evolving Language

• PyPy

• Python 3

Reasons for Popularity
key adopters and killer-apps

Really Early Adopters
Math and Scientific Community

Python's operator overloading and simple syntax was very convenient for
scientific uses.

Trivia: Math Driven Syntax
foo[1,...,2]

==
foo[(1, Ellipsis, 2)]

Other Factors
Python was easy to extend with C extensions and starting with distutils it

was possible to distribute them

Windows!
Python has had excellent Windows support in the past unlike many other

programming languages that were created in the POSIX environment

Trivia: Battlefield 2 used Python
And since the engine is still used today there are free to play versions of

Battlefield still using Python for scripting

Web Development
We slowly and steadily became a proven platform for the web

Python is not the final answer there but an amazing platform to start

Twisted
If you wanted to do networking a few years ago Twisted was the answer

Trivia: Early XMPP Transports
Most of the XMPP to X transports were written in Python with Twisted

But Really …

It's fun!
People enjoy working with the language

I have yet to see a Wifi Hotspot Portal Page
that is written in Python

and sucks

Disclaimer: I understand that this statement is very optimistic and bad Python code exists in practice, that there
are frameworks in the Python community that advocate for sloppy code, that there are widely used modules with

security problems or bad general design, that there are indeed Wifi hotspot login pages that are horrible and
indeed written in Python, that there are well written Wifi login pages in PHP (I don't actually believe that), that I am

hugely biased and that my sample size is waaaaaaaaaaaaaaaaay too small.

“FUN!?”
What is this?

Y U NO WORK

No Running into Walls

Descriptors
Python's most important language feature

What are Descriptors?

• __get__

• __set__

• __delete__

• Common descriptors: functions, properties

Trivia: Functions are Descriptors
that's what makes them methods if placed within classes

Example: Basic Descriptor Lookup

>>> class Foo(object):
... def my_function(self):
... pass
...
>>> Foo.my_function
<unbound method Foo.my_function>
>>> Foo.__dict__['my_function']
<function my_function at 0x1002e1410>
>>> Foo.__dict__['my_function'].__get__(None, Foo)
<unbound method Foo.my_function>
>>>
>>> Foo().my_function
<bound method Foo.my_function of <__main__.Foo object at 0x1002e2710>>
>>> Foo.__dict__['my_function'].__get__(Foo(), Foo)
<bound method Foo.my_function of <__main__.Foo object at 0x1002e2750>>

Example: Everyday Decorators

>>> class Foo(object):
... @property
... def foo(self):
... return 'hello pycon'
...
>>> Foo().foo
'hello pycon'

Cached Properties

missing = object()

class cached_property(object):

 def __init__(self, func):
 self.func = func
 self.__name__ = func.__name__
 self.__doc__ = func.__doc__
 self.__module__ = func.__module__

 def __get__(self, obj, type=None):
 if obj is None:
 return self
 value = obj.__dict__.get(self.__name__, missing)
 if value is missing:
 value = self.func(obj)
 obj.__dict__[self.__name__] = value
 return value

Example: Cached Properties

class Post(object):

 def __init__(self, text):
 self.text = text

 @cached_property
 def rendered_text(self):
 return markdown_to_html(self.text)

Duck Typing
“if it's not a penguin it must be a duck”

ABDT: Abstract Base Duck Typing
abstract bases for improved duck typing

Abstract Base Duck Typing

• abc.ABCMeta — metaclass for abstract bases

• collections.* — common abstract bases

Abstract Base Duck Typing

callable(x) -> isinstance(x, Callable)
tryexcept(hash(x)) -> isinstance(x, Hashable)
tryexcept(iter(x)) -> isinstance(x, Iterable)
tryexcept(len(x)) -> isinstance(x, Sized)
tryexcept(hasattr(x, ‘__contains__’))
 -> isinstance(x, Container)

 -> isinstance(x, Mapping)
 isinstance(x, Set)
 isinstance(x, Sequence)
 isinstance(x, MutableMapping)
 isinstance(x, MutableSet)
 isinstance(x, MutableSequence)

Example: Abstract Base Duck Typing

>>> from collections import Iterator
>>> class MyIter(object):
... def __iter__(self):
... return self
... def next(self):
... return 42
...
>>> isinstance(MyIter(), Iterator)
True

Custom Ducks

from abc import ABCMeta, abstractmethod

class Markedup(object):
 __metaclass__ = ABCMeta

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Markedup:
 if hasattr(C, "__html__"):
 return True
 return NotImplemented

Example: Custom Ducks

>>> class Markup(unicode):
... def __html__(self):
... return self
...
>>> isinstance(Markup('test'), Markedup)
True

Debugging Helpers
use internals to track down bugs

Tracking Imports

import sys
import __builtin__
real_import = __builtin__.__import__

def debug_import(name, locals=None, globals=None, fromlist=None, level=-1):
 glob = globals or sys._getframe(1).f_globals
 importer_name = glob and glob.get('__name__') or 'unknown'
 print '%s imports %s' % (importer_name, name)
 return real_import(name, locals, globals, fromlist, level)

__builtin__.__import__ = debug_import

Example: Tracking Imports

>>> import urlparse
__main__ imports urlparse
urlparse imports collections
collections imports _abcoll
collections imports _collections
collections imports operator
collections imports keyword
collections imports sys
collections imports heapq
heapq imports itertools
heapq imports operator
heapq imports bisect
bisect imports _bisect
heapq imports _heapq
collections imports itertools

Interpreter Frames

def print_frame_info(frame):
 print 'module: %s' % frame.f_globals.get('__name__')
 print 'filename: %s' % frame.f_code.co_filename
 print 'current line: %d' % frame.f_lineno
 loc = dict((k, v) for k, v in frame.f_locals.iteritems()
 if not k.startswith('__'))
 print 'local variables: %s' % loc

Example: Interpreter Frames

>>> import sys
>>> print_frame_info(sys._getframe())
module: __main__
filename: <stdin>
current line: 1
local variables: {
 'a': 2,
 'b': 4,
 'sys': <module 'sys' (built-in)>,
 'print_frame_info': <function print_frame_info at 0x100484668>
}

Dumping Threads

import sys
import traceback

def dump_threads():
 for thread_id, frame in sys._current_frames().iteritems():
 print 'Thread #%d' % thread_id
 print ''.join(traceback.format_stack(frame))

Example: Dumping Threads

>>> import time, threading
>>> def foo():
... for x in xrange(10):
... time.sleep(1)
...
>>> threading.Thread(target=foo).start()
>>> dump_threads()
Thread #4302381056
 File "lib/python2.7/threading.py", line 483, in run
 self.__target(*self.__args, **self.__kwargs)
 File "<stdin>", line 3, in foo
 time.sleep(1)

Thread #140735295412576
 File "<stdin>", line 1, in <module>
 dump_threads()
 File "<stdin>", line 4, in dump_threads
 print ''.join(traceback.format_stack(frame)).rstrip()

Why we love Python
and why we don't use other things

Win because awesome Fail

This is how I “sell” Python

Slow Execution Monitor

• Dump stacktrace if an API request runs longer than N seconds

• Permanent background thread

• Request start -> set marker

• Request end -> remove marker

• If marker active for more than N seconds -> log stacktrace

Remote Console

• All Python code has a thread that listens for requests on redis

• Can be used to execute arbitrary Python code for debugging

• Sends results back to redis

Rich Logging

• We log into Sentry error groups

• all stacktraces on dev environments include local variables for all frames

• Also speaks $language

Sentry

Includes all information, groups automatically

Memory Leak Finding

• Walk over all objects the garbage collector can reach

• Resolve weak references

• Group by type

• Log to top grossing to graphite every second

Finding a Greenlet Leak

Easy to track down what exactly is happening, ~40 lines of code

Killer Libraries

• SQLAlchemy

• lxml

• *WSGI

• $webframework

virtualenv

• it does not matter that packaging or the import system is broken

• it could be so much worse

• virtualenv makes the big chaos into many separate small chaoses

Easy to Learn

• Language can be picked up in weeks

• It's a fun language to learn

• It's very dynamic and leaves room for (crazy) experimentation

not insaneTM

An Amazing Community

• Developers and people all around the world

• embraces simple and truly open licenses

• loves documentation

• … now also loves testing

screw hackernews

&Worry Less
get stuff done

Q&A
http://fireteam.net/ — Armin Ronacher — @mitsuhiko

http://fireteam.net
http://fireteam.net

