
Letters from the Battlefield
Armin @mitsuhiko Ronacher

I like to review code and design APIs

design for maintainability and security

“if I could do it again …”

so here are some lessons learned

the thing about overengineering
PREFACE

overengineering |ˈōvərˌenjəˈniriNG|
noun

the designing of a product to be more
robust or complicated than is necessary for
its application

a lot of what's in this talk is often seen as “unnecessary”

developers are afraid of complexity and initial overhead

but the right solutions were often already created; use them

being afraid of changes
PROLOGUE

afraid |əˈfrād|
adjective

worried that something undesirable will
occur or be done: he was afraid that the
farmer would send the dog after them

changes

• developers should never feel afraid of code changes

• developers should not be afraid of the first change

• developers should feel comfortable doing big changes

• developers should not accidentally produce security problems

bite size chunks

• write code so that developers are never overwhelmed

• neither on making new features

• nor on changing existing code

• simplifies code review

the goal is to make developers confident and happy

where is the state?
CHAPTER 1

state |stāt|
noun

the particular condition that someone or
something is in at a specific time

state in programming

• Most prominent languages are rich in state

• But poor in explicitly managing it

• Most programmers do not know how their own state works

• No rules when mutable state becomes assumed constant state

why is that a problem?

• Most prominent languages are rich in state

• But poor in explicitly managing it

• Most programmers do not know how their own state works

practical example

from functools import update_wrapper
from django.conf import settings

def might_debug(f):
 def new_func(*args, **kwargs):  
 if settings.DEBUG:
 do_some_debug_stuff()
 return f(*args, **kwargs)
 return update_wrapper(new_func, f)

is ‘settings’ mutable?

• it's python, so the answer is yes

• however at which point is it safe to modify them?

• what if people drag out state to an unsafe scope?

decision made
from functools import update_wrapper
from django.conf import settings

if settings.DEBUG:
 def might_debug(f):
 def new_func(*args, **kwargs):  
 do_some_debug_stuff()
 return f(*args, **kwargs)
 return update_wrapper(new_func, f)
else:
 might_debug = lambda x: x

module state in python

• imports are stateful

• module scope is stateful

• this influences code we write in Python

• modules in Python are giant singletons

• the scope of state can be hidden

hidden state

from flask import request

def is_api_request():
 return bool(request.headers.get('Authorization'))

“Every once a while the error messages are Spanish”

decisions made from hidden state

>>> from django.utils.translation import ugettext
>>> ugettext('Hmmmm')
u'Hmmmm'

decisions made from hidden state

from django.utils.translation import ugettext

class LoginForm(…):
 ERROR = ugettext(u"Could not sign in")

decisions made from hidden state

def handle_request(request):
 endpoint, args, kwargs = match_request(request)
 func = import_view_function(endpoint)
 return func(*args, **kwargs)

shackle the state!
CHAPTER 2

shackle |ˈSHak(ə)l|
verb

restrain; limit: they seek to shackle the oil
and gas companies by imposing new
controls.

stateful APIs suck

• nobody likes stateful APIs

• in particular nobody likes APIs that randomly change behavior

ideal state management

• create scope

• set up initial working conditions (modify here)

• execute code

• clean up state

• destroy scope

prevent access

• If something is not there, say so, not not fall back

• translations should not silently become idempotent calls

raise if accessed in bad scope

>>> from flask import request
>>> request.headers
Traceback (most recent call last):
 …
RuntimeError: Working outside of request context.

prevent modifications

with settings.transaction() as t:
 t.CONFIG_VALUE = 42

settings.close()

prevent stupid code

>>> settings.transaction()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
RuntimeError: Settings are closed. No more modifications

import madness
CHAPTER 3

madness |ˈmadnəs|
noun

the state of being mentally ill, especially
severely.

the art of importing

• import all

• upfront

• do not import at runtime

• there be many evil backstabbing dragons

import all stuff

from werkzeug.utils import find_modules

def import_all(pkg):
 for module in find_modules(pkg, recursive=True):
 __import__(module)

import_all(__name__.split('.')[0])

why?

• importing requires locks; imports can be recursive

• imports have side effects, let's get it done early

• both those things are bad

• once it's imported, it's cached

• after that things become much, much more predictable

circular dependencies

• good luck with that ;-)

• I do not have a good response to this.

make it searchable
CHAPTER 4

search |sərCH|
verb

try to find something by looking or
otherwise seeking carefully and
thoroughly: I searched among the rocks, but
there was nothing

why?

• new developers need to understand context

• when you have conceptional security issues you need to find things

• aids code review

what's ‘searchable’

• assume your only tool is grep

• write code so that you can grep/full text search it

• it will be worth it

things that are easily grep-able

• decorators!

• explicit and clear function and class names

• special methods

• avoid funky operator overloads if they do something non-standard

predict common behavior
CHAPTER 5

predict |prəˈdikt|
verb

say or estimate that (a specified thing) will
happen in the future or will be a
consequence of something: he predicts that
the trend will continue

my least favorite code

import json
from django.http import HttpResponse

def view_function(request):
 some_data = generate_some_data(…)
 return HttpResponse(json.dumps(some_data),
 mimetype='application/json')

what about this?

from myproject.api import ApiResponse

def view_function():
 some_data = generate_some_data(…)
 return ApiResponse(some_data)

why?

• we establish “request context”

• we define a clear common case of “this is the result of an API”

• we can transform and handle data on the way out

what do we gain?

• JSON encode security issues? One clear point to handle it

• Need to support a custom mimetype? Change all in one go

• Instrumentation? One common object

convert common values

def handle_request(request):
 rv = dispatch_request(request)
 if isinstance(rv, ApiResponse):
 rv = Response(json.dumps(rv),
 mimetype='application/json',
 status=rv.status_code)  
 return rv

define context
CHAPTER 6

context |ˈkäntekst|
noun

the circumstances that form the setting for
an event, statement, or idea, and in terms
of which it can be fully understood and
assessed

what is context

• runtime context (“scopes”)

• data context (“transfer encodings”)

• security context (“who is the actor?”)

context behavior

• what happens based on context?

• how does data look like?

• how does context influence what is happening?

examples of scoped context

• current language

• current http request

• current authenticated user

• current access restrictions

implied context

>>> from myapp.i18n import ugettext, set_language
>>> with set_language("en_US"):
... ugettext("Sign in")
...
u"Sign in"
>>> with set_language("de_DE"):
... ugettext("Sign in")
...
u"Anmelden"

context for data

• object in string context

• object in HTML context

• object serialization

data in context

>>> from markupsafe import Markup, escape
>>> unicode(my_user)
u"Peter Doe"
>>> escape(my_user)
u'Peter Doe'
>>> Markup("%s") % my_user
u'Peter Doe'
>>> print json.dumps(my_user)
{"username": "Peter Doe", "id": 42}

prevent misuse
CHAPTER 7

misuse |ˌmisˈyo͞os|
noun

the wrong or improper use of something: a
misuse of power.

context for improved security
from myapp.db import Model, Query
from myapp.access import get_available_organizations

class Project(Model):
 …

 @property
 def query(self): 
 org_query = get_available_organizations()
 return Query(self).filter(
 Project.organization.in_(org_query))

automatic escaping

• Template engines escape data automatically by HTML rules

• However HTML is complex in behavior (script tags, attributes etc.)

• It becomes possible to accidentally misuse things

• People will get it wrong, so worth investigating the options

JSON in HTML

• Common case to send JSON to HTML

• Two areas of concern: HTML attributes and <script> tags

• How to escape in those. Common case? Can we make one function
for both?

example escaping

>>> from flask.json import htmlsafe_dumps
>>> print htmlsafe_dumps("var x = 'foo';")
"\u003cem\u003evar x = \u0027foo\u0027;\u003c/em\u003e"

result of this exercise

• does not produce any HTML entities

• now works in <script> …

• … as well as single quoted attributes

• falls over very obviously in double quoted attributes

• it's pretty clear how it's supposed to work and hard to misuse

think before you act!

Q A&

