Letters from the Battlefield

Armin @mitsuhiko Ronacher

Flask

web development,
one drop at a time

AN\ SENTRY

[like to review code and design APIs

design for maintainability and security

“if I could do it again ...”

so here are some lessons learned

PREFACE

the thing about overengineering

overengineering | '0var,enjaniriNG |

noun
the designing of a product to be more
robust or complicated than is necessary for
its application

a lot of what's in this talk is often seen as “unnecessary”

developers are afraid of complexity and initial overhead

but the right solutions were often already created; use them

PROLOGUE

being afraid of changes

afraid |o'frad |

adjective
worried that something undesirable will
occur or be done: he was afraid that the
farmer would send the dog after them

changes

developers should never feel atraid of code changes
developers should not be afraid of the first change
developers should feel comfortable doing big changes

developers should not accidentally produce security problems

bite size chunks

* write code so that developers are never overwhelmea
* neither on making new features
* nor on changing existing code

* simplifies code review

the goal is to make developers confident and happy

CHAPTER 1

where is the state?

state |stat|

noun
the particular condition that someone or
something is in at a specific time

state in programming

Most prominent languages are rich in state
But poor in explicitly managing it
Most programmers do not know how their own state works

No rules when mutable state becomes assumed constant state

why is that a problem?

* Most prominent languages are rich in state
* But poor in explicitly managing it

* Most programmers do not know how their own state works

practical example

from functools impoxt update_wrapper
from django.conf impoxrt settings

def might_debug(f):
def new_func(*args, **kwargs):
1f settings.DEBUG:
do_some_debug_stuff()
return f(*args, **kwargs)
return update_wrapper(new_func, f)

is ‘settings’ mutable?

* it's python, so the answer is yes
* however at which point is it safe to modify them?

* what if people drag out state to an unsafe scope?

decision made

from functools impoxt update_wrapper
from django.conf import settings

1f settings.DEBUG:
def might_debug(f):
def new_func(*args, **kwargs):
do_some_debug_stuff()
return f(*args, **kwargs)
return update_wrapper(new_func, f)
else:
might_debug = lambda x: X

module state in python

imports are stateful

module scope is statetful

this influences code we write in Python
modules in Python are giant singletons

the scope of state can be hidden

hidden state

from flask import request

def is_api_request():
return bool(request.headers.get('Authorization'))

“Every once a while the error messages are Spanish”

decisions made from hidden state

>>> from django.utils.translation import ugettext
>>> ugettext('Hmmmm")
u'Hmmmm'

decisions made from hidden state

from django.utils.translation import ugettext

class LoginForm(..):
ERROR = ugettext(u"Could not sign in'")

decisions made from hidden state

def handle_request(request):
endpoint, args, kwargs = match_request(request)
func = import_view_function(endpoint)
return func(*args, **kwargs)

CHAPTER 2

shackle the state!

shackle |'SHak(a)l |

verb
restrain; [imit: they seek to shackle the oil
and gas companies by imposing new
controls.

stateful APIs suck

* nobody likes stateful APls

* in particular nobody likes APls that randomly change behavior

ideal state management

* create scope
* set up initial working conditions (modify here)
* execute code
* clean up state

» destroy scope

prevent access

* |t something is not there, say so, not not fall back

* translations should not silently become idempotent calls

raise if accessed in bad scope

>>> from flask import request
>>> request.headers
Traceback (most recent call last):

RuntimeError: Working outside of request context.

prevent modifications

with settings.transaction() as t:
€.CONFIG_VALUE = L2

settings.close()

prevent stupid code

>>> settings.transaction()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: Settings are closed. No more modifications

CHAPTER 3

import madness

madness | madnas |

noun
the state of being mentally ill, especially
severely.

the art of importing

import all
upfront
do not import at runtime

there be many evil backstabbing dragons

import all stuff

from werkzeug.utils impoxt find_modules

def import_all(pkg):
for module in find_modules(pkg, recursive=True):
__import__(module)

import_all{(__name__.split('.'")[0])

why?

importing requires locks; imports can be recursive
imports have side effects, let's get it done early
both those things are bad

once it's imported, it's cached

after that things become much, much more predictable

circular dependencies

e good luck with that ;-)

* | do not have a good response to this.

CHAPTER 4

make it searchable

search |sarCH|

verb
try to find something by looking or
otherwise seeking carefully and
thoroughly: I searched among the rocks, but
there was nothing

why?

* new developers need to understand context
e when you have conceptional security issues you need to find things

e aids code review

what's ‘searchable’

e assume your only tool is grep
* write code so that you can grep/full text search it

e it will be worth it

things that are easily grep-able

decorators!
explicit and clear function and class names
special methods

avoid funky operator overloads if they do something non-standard

CHAPTERS

predict common behavior

predict | pra'dikt|

verb
say or estimate that (a specified thing) will
happen in the future or will be a
consequence of something: he predicts that
the trend will continue

my least favorite code

impoxrt json
from django.http i1mpoxt HttpResponse

def view_function(request):
some_data = generate_some_datac(..)
return HttpResponse(json.dumps(some_data),
mimetype="application/json')

what about this?

from myproject.apli impoxrt ApiResponse

def view_function():
some_data = generate_some_datac(..)
return ApiResponse(some_data)

why?

* we establish “request context”
e we define a clear common case of “this is the result of an AP!”

e we can transform and handle data on the way out

what do we gain?

* JSON encode security issues? One clear point to handle it
* Need to support a custom mimetype? Change all in one go

* |nstrumentation? One common object

convert common values

def handle_request(request):
rv = dispatch_request(request)
if isinstance(rv, ApiResponse):
¥rv = Response(json.dumps(xrv),
mimetype='"application/json’',
status=rv.status_code)
return rv

CHAPTERG6

define context

context |'kantekst|

noun
the circumstances that form the setting for
an event, statement, or idea, and in terms
of which it can be fully understood and

assessed

what is context

* runtime context (“scopes”)
e data context (“transter encodings”)

* security context (“who is the actor?”)

context behavior

* what happens based on context?
* how does data look like?

* how does context influence what is happening?

examples of scoped context

current language
current http request
current authenticated user

current access restrictions

implied context

>>> from myapp.118n impoxrt ugettext, set_language
>>> with set_language("en_US"):
ugettext("sSign in")

u'"'sign in"
>>> with set_language("de_DE"):
ugettext("sign in")

u"Anmelden"

context for data

* Oobject in string context
* objectin HTML context

* object serialization

data in context

>>> from markupsafe import Markup, escape

>>> unicode(my_user)

u'"'Peter Doe"

>>> escape(my_user)

u'Peter Doe'

>>> Markup("¥%s") % my_user

u'Peter Doe'
>>> print json.dumps(my_user)

§'"username": '"Peter Doe'", '"id": L2}

CHAPTER 7

prevent misuse

misuse | mMis'y0o0s |

noun
the wrong or improper use of something: a
misuse of power.

context for improved security

from myapp.db import Model, Query
from myapp.access impoxrt get_available_organizations

class Project(Model):

@property
def query(self):

0org_query = get_available_organizations()
return Query(self).filter(
Project.organization.in_{org_query))

automatic escaping

Template engines escape data automatically by HTML rules
However HTML is complex in behavior (script tags, attributes etc.)
't becomes possible to accidentally misuse things

People will get it wrong, so worth investigating the options

JSON in HTML

e Common case to send JSON to HTML

e Two areas of concern: HTML attributes and <script> tags

* How to escape in those. Common case? Can we make one function
for both?

example escaping

>>> from flask.json import htmlsafe_dumps
>>> print htmlsafe_dumps('var x = '"foo';")
"\ueo3cem\uBB3evar x = \ubv27foo\uo27:;\ueb3c/em\uoo3e"

result of this exercise

does not produce any HTML entities

now works in <script> ...

... as well as single quoted attributes

falls over very obviously in double quoted attributes

it's pretty clear how it's supposed to work and hard to misuse

think before you act!

