
Let’s Talk About Templates

Armin Ronacher
@mitsuhiko

Templates
why are we discussing templates in 2014?

In 2011 we all thought single page
applications are the future

“Cloud” Performance > Phone Performance

It's really hard to make a nice, JS heavy UI

Server Side Rendering is Fancy Again
(at least for us)

“Talk about Performance”
every invitation about a template engine talk ever

History Lessons
History of Python Template Engines

Django and Jinja and the Greater Picture

❖ 2000: mod_python

❖ 2003: Webware for Python (-> wsgikit -> paste -> webob)

❖ 2003: WSGI spec

❖ 2005: Django

❖ 2006: Jinja

❖ 2008: Jinja2

❖ 2014: haven't touched templates in years!

(story not continued)

Personal Growth
Why I have a hard time talking about Jinja today

Armin and Jinja

❖ Armin learning programming: 2003

❖ Armin learning Python: 2004

❖ Django’s first public release: July 2005

❖ Jinja’s first public release: January 2006

❖ Jinja2: June 2008

Jinja2 has bugs, bug fixing some of them
would probably break people’s templates

Jinja’s Problems

❖ Hand written lexer with problematic operator priorities

❖ Slightly incorrect identifier tracking

❖ Non ideal semantics for included templates

❖ Slow parsing and compilation step

not broken enough for a rewrite

(there���������	
�������������������� won’t���������	
�������������������� be���������	
�������������������� a���������	
�������������������� Jinja���������	
�������������������� 3)

How do they work?
What makes a template engine work

Template Engine Design

❖ Django and Jinja2 differ greatly on the internal design

❖ Django is an AST interpreter with made up semantics

❖ Jinja is a transpiler with restricted semantics to aid compilation

General Preprocessing Pipeline

❖ Load template source

❖ Feed source to lexer for tokenization

❖ Parser converts tokens into an AST (Abstract Syntax Tree)

❖ -> Compile to Bytecode

❖ -> Keep AST for later evaluation

Rendering Pipeline

❖ Create a context object with all data for the template

❖ Take AST/bytecode

❖ pass context and AST/bytecode to render system

❖ acquire result

The Differences
How do Jinja2 and Django differ?

❖ Evaluates Bytecode ❖ Evaluates AST

What they do when they render

❖ Overarching Grammar

❖ As the lexer encounters a block
opener tag it will switch it’s
parsing state

❖ Allows arbitrary nesting of lexial
constructs

❖ Two stage grammar

❖ Lexer splits template into
tokens in the form “block”,
“variable”, “comment” and
“template data”

❖ Second stage lexer splits tokens
into smaller ones

❖ No nesting

❖ BLOCK_START

❖ NAME "if"

❖ IDENT "expr"

❖ BLOCK_END

❖ DATA "…"

❖ BLOCK_START

❖ NAME "endif"

❖ BLOCK_END

❖ BLOCK "if expr"

❖ DATA "…"

❖ BLOCK "endif"

{% if expr %}...{% endif %}

{{ "{{foo}}" }} {% templatetag commentopen %}
foo{% templatetag commentclose %}

Render: {{foo}}

❖ Nodes in Jinja act as AST

❖ The AST gets processed and
compiled into Python code

❖ Nodes are thrown away post
compilation

❖ Nodes in Django are kept in
memory

❖ Upon evaluation their callbacks
are invoked

❖ Callbacks render the template
recursively into strings

❖ Overarching Grammar

❖ As the lexer encounters a block
opening tag it will switch it’s
parsing state

❖ Allows arbitrary nesting of lexial
constructs

❖ Two stage grammar

❖ Lexer splits template into
tokens in the form “block”,
“variable”, “comment” and
“template data”

❖ Second stage lexer splits tokens
into smaller ones

❖ No nesting

❖ heavily discouraged

❖ syntax consistent with Jinja core

❖ need to generate Jinja nodes

❖ tricky to debug due to compiled
nature

❖ encouraged and ubiquitous

❖ can and do have custom syntax

❖ easy to implement due to the
render method and context object

❖ debugging possible within Django
due to the debug middleware

❖ compiles into a generator yielding
string chunks.

❖ proper recursive calls will buffer

❖ syntax supported recursion will
forward iterators

❖ each render function yields a
string

❖ any form of recursive calls will
need to assemble a new string

❖ keeps source information

❖ integrates into Python traceback,
supports full recursion including
calls to Python and back to Jinja

❖ Customizable behavior for
missing variables

❖ keeps simplified source location
on nodes

❖ uses it's own error rendering and
for performance reasons cannot
provide more accurate
information

❖ Missing var = empty string

❖ Source of data

❖ Only holds top-level variables

❖ Two-layer dictionary, optionally
linked to a parent scope but not
resolved through

❖ Store of data

❖ Holds all variables

❖ Stack of dictionaries

❖ uses markupsafe

❖ escaping is “standardized”

❖ lives in Python

❖ the only integration in the
template engine is:

❖ awareness in the optimizer

❖ enables calls to escape() for all
printed expressions

❖ Django specific

❖ lives largely only in the template
engine with limited support in
Python

❖ Django one-directionally supports
the markupsafe standard

markupsafe

class Foo(object):

 def __html__(self): 
 return Markup(u'This object in HTML context')

 def __unicode__(self): 
 return u'This object in text context'

>>> Markup('%s') % '<script>alert(document.cookie)</script>'
Markup(u'<script>alert(document.cookie)</script>')

Django's Templates
How it renders and does things

Parsing after “Tokenizing”

❖ look at first name

❖ load “parsing callback for name”

❖ parsing callback might or might not use “token splitting function”

❖ parsing callback creates a node

Templates are really old

❖ whoever wrote it, learned what an AST interpreter is

❖ someone else changed it afterwards and forgot that the idea is, that it's
not mutating the state of nodes while rendering

❖ only after Jinja2's release could Django cache templates because rendering
stopped mutating state :)

How it Represents

NodeList([
 TextNode("Hello "),
 VariableNode(FilterExpression(
 var=Variable("variable"),
 filters=[("escape", ()])
)
])

Hello {{ variable|escape }}

How it Renders

class NodeList(list):

 def render(self, context):
 bits = []
 for node in self:
 if isinstance(node, Node):
 bit = node.render(context)
 else:
 bit = node
 bits.append(force_text(bit))
 return mark_safe(''.join(bits))

Hello {{ variable|escape }}

Complex Nodes

class IfNode(Node):

 def __init__(self, conditions_nodelists):
 self.conditions_nodelists = conditions_nodelists

 def render(self, context):
 for condition, nodelist in self.conditions_nodelists:
 if condition is not None:
 try:
 match = condition.eval(context)
 except VariableDoesNotExist:
 match = None
 else:
 match = True
 if match:
 return nodelist.render(context)
 return ''

{% if item %}...{% endif %}

Jinja is Complex
Jinja does things because it can

Basic Transpiling

def root(context):
 l_variable = context.resolve('variable')
 t_1 = environment.filters['escape']
 yield u'Hello '
 yield escape(t_1(l_variable))

Hello {{ variable|escape }}

Knowledge Allows Optimizations

def root(context):
 yield u'Hello <World>!'

Hello {{ "<World>!"|escape }}

Different Transformations

def root(context):
 l_seq = context.resolve('seq')
 l_item = missing
 for l_item in l_seq:
 yield u''
 yield escape(l_item)
 l_item = missing

{% for item in seq %}{{ item }}{% endfor %}

Different Transformations

def root(context):
 l_seq = context.resolve('seq')
 l_item = missing
 l_loop = missing
 for l_item, l_loop in LoopContext(l_seq):
 yield u'%s: %s' % (
 escape(environment.getattr(l_loop, 'index')),
 escape(l_item),
)
 l_item = missing

{% for item in seq %}{{ loop.index }}: {{ item }}{% endfor %}

Block Handling

def root(context):
 yield u'<title>'
 for event in context.blocks['title'][0](context):
 yield event
 yield u'</title>'

def block_title(context):
 yield u'Default Title'

blocks = {'title': block_title}

<title>{% block title %}Default Title{% endblock %}</title>

Super Calls

def root(context):
 parent_template = None
 parent_template = environment.get_template('layout', None)
 for name, parent_block in parent_template.blocks.iteritems():
 context.blocks.setdefault(name, []).append(parent_block)
 for event in parent_template.root_render_func(context):
 yield event

def block_title(context):
 l_super = context.super('title', block_title)
 yield escape(context.call(l_super))

blocks = {'title': block_title}

{% extends "layout" %}{% block title %}{{ super() }}{% endblock %}

Errors

Traceback (most recent call last):
 File "example.py", line 7, in <module>
 print tmpl.render(seq=[3, 2, 4, 5, 3, 2, 0, 2, 1])
 File "jinja2/environment.py", line 969, in render
 return self.environment.handle_exception(exc_info, True)
 File "jinja2/environment.py", line 742, in handle_exception
 reraise(exc_type, exc_value, tb)
 File "templates/broken.html", line 4, in top-level template code
 {{ may_break(item) }}
 File "templates/subbroken.html", line 2, in template
 [{{ item / 0 }}]
ZeroDivisionError: division by zero

{% macro may_break(item) -%} [{{ item / 0 }}] {%- endmacro %}

Make one like the other
About the many attempts of making Django like Jinja

Why make one like the other?

❖ People like Jinja because of

❖ expressions

❖ performance

❖ People like Django because of

❖ extensibility

The Performance Problem

❖ Jinja is largely fast because it choses to “not do things”:

❖ it does not have a context

❖ it does not have loadable extensions

❖ if it can do nothing over doing something, it choses nothing

❖ it tracks identifier usage to optimize code paths

Why can't Django do that?

❖ Jinja needed to sacrifice certain functionality

❖ Doing the same in Django would break everybody's code

Why not make a Jinja Inspired Django?

❖ Making the Django templates like Jinja2 would be a Python 3 moment

❖ There would have to be a migration path (allow both to be used)

❖ Cost / Benefit relationship is not quite clear

Pluggable Template Engines?

❖ Most likely success

❖ Could start switching defaults over at one point

❖ Pluggable apps might not like it :(

Questions and Answers
Slides will be at lucumr.pocoo.org/talks

Contact via armin.ronacher@active-4.com
Twitter: @mitsuhiko

If you have interesting problems, you can hire me :)

http://lucumr.pocoo.org/talks
mailto:armin.ronacher@active-4.com
http://twitter.com/mitsuhiko

