
Armin Ronacher

Shipping Sentry

Armin Ronacher
@mitsuhiko

Flask / Sentry / Lektor

Find the Slides at
lucumr.pocoo.org/talks

http://lucumr.pocoo.org/talks

reach out to me!
I want to talk :)

sentry. io

http://sentry.io

「 THE TWO PRODUCTS 」

sentry vs ‘getsentry’

sentry open source repo
on-premise
monthly releases

‘getsentry’ billing & quotas
depends on sentry
hourly deploys

「 GROWING THE TEAM 」

2.5 to 25 more process
keep processes light
keep developers happy

2 locations process in code
natural for us because of
the Open Source nature

「 THE GOALS 」

deploy in seconds
be unable to screw up

and if you do: instant rollbacks

tag a release once a month

「 WORKFLOW 」

commit

review

integration

deploy

requires good test coverage
requires good local setup

makes it easier for newcomers

「 COMMITTING 」

lint on commit!

1 Release / Month
5 Deployments / Day

On Prem:
Hosted:

master is stable

1. branch off master
2. pull request
3. merge

all the pull requests

!! AVOID DOWNTIME !!

postgres <3

transactional ddl, concurrent
indexes, cheap alter table add

nullable columns

bidirectional compatibility

separation of state and connections

「 CONTINUOUS TESTING 」

sentry travis-ci.org
test all the code

http://travis-ci.org

‘getsentry’ travis-ci.com
test code relevant for us

http://travis-ci.com

「 CONTINUOUS DELIVERY 」

FREIGHT
wait for travis > build > ship

bidirectional
communication with

the main slack channel

dev never matches prod :(

thus: fast rollbacks!
(backwards + forwards compatibility)

「 CODE STRUCTURE 」

large systems are organisms

not all things will run the
same code at the same time

data schema ~ code behavior

break up larger features

feature flag it!
(we shipped some code to on-prem we backed out)

「 REPO STRUCTURE 」

move towards “monorepos”
(but within what is possible with our tools)

{ no t a s mono as we wou ld l i ke }

「 MOVING PARTS 」

keep dev basic: fewer parts

do not diverge dev from prod
too much

virtual machines and docker
are not an acceptable dev

environment

「 REPRODUCIBLE BUILDS 」

pip freeze / yarn

nothing is more frustrating than a failed deploy
because a dependency of a dependency of a
dependency of a dependency pushed out a

broken release

build once > ship to many

「 BINARY DEPS 」

OS X & “manylinux”

C/C++/Rust Modules for Python

Build in Docker on old CentOS

Debian / RHEL / Ubuntu

「 MONITOR FAILURES 」

associate failures to users

map support requests to failures

use sentry :-)

「 FRIENDLY ROBOTS 」

replace yourself!

bots and webhooks

github hooks

notify to communication hub

testing danger.systems

「 BETTER CLIMATE 」

the more robots,
the better the integration,

the smaller the fear of doing damage

If you can launch a feature on your first
day of work that's motivating

also: happy customers

Q&Areach out to me!
I want to talk :)

