SSL, CAs and keeping your stuff safe
a presentation by armin ronacher for pygrunn 2014

http://lucumr.pocoo.org/ — @mitsuhiko
SSL, CAs, and keeping your stuff safe

A CAPITALISTIC AND SYSTEM CONFORMANT TALK ABOUT ENCRYPTION

a presentation by arima

http://lucumr.pocoo.org/ — @mitsuhiko
Armin Ronacher

Independent Contractor for Splash Damage / Fireteam
Doing Online Infrastructure for Computer Games
~ Epilogue ~

... The Problem with Programmers
Programmers think everything is a technical problem
~ Chapter 1 ~

Fraud
What is the worst that can happen?

XXXXX-XXXXX-XXXXX-1234
What makes Credit Card Numbers “secure”?
There will always be criminals
But what damage can they do?
Bitcoin
- Strong Encryption
- 256 bit private key
- decentralized

A Credit Card
- Potentially No Encryption
- 16 digit number + checksum
- centralized
But I'd rather lose my credit card ...
Never mind me using this stolen card over the counter.
LOL NO SECURITY

but over the internet ...
We Accept Stolen Creditcards
The Protocol is insecure

The Process is secure
If the fraud percentage is smaller than the transaction fees we're all good.
It's too easy to forget the bigger picture
~ Chapter 2 ~

of Lock Symbols and Encryption
the lock symbol is a lie
the lock stands for secure
but so is encryption
such security

Private

Telegram messages are heavily encrypted and can self-destruct.

Chadder keeps your information safe by using encryption. When you send a message, only the recipient can see it - everyone else, see only garbled, encrypted text. We do not have the key to unlock your message, so no one can read or track your messages.
such buzzwords

CRIME

Heartbleed

PFS

BEAST

BREACH
users need to understand how to keep good from bad lock symbols / good from bad encryption.
but even developers are not sure yet ...
remember why you encrypt

(NSA does no care about your shifty blog)
Why do we Encrypt Traffic?
public WiFi killed the unencrypted browser session
Who is the Attacker?
from secret agents to idiots
from targeted to untargeted
from low to high probability
~ Chapter 4 ~

What You Need for Encryption
passive vs active eavesdropping

- encryption
- authentication
$ ssh pocoo.org
The authenticity of host 'pocoo.org (148.251.50.164)' can't be established.
Are you sure you want to continue connecting (yes/no)?
your user does not check fingerprints
(your user thinks a lock symbol means security)
thus:

Certificate Authorities
let it be known that CAs are worthless for securing APIs
Protecting APIs and Services

(non JavaScript APIs)
The Only Rule to Follow
run your own CA
issue certificates for 24 hours
trust your own CA only
screw revocations
You trust your own CA by distributing the certificate to everybody.
If your root gets compromised, distribute new root certificates.
If an individual key gets compromised, in less than 24 hours everything is fine.
from requests import get
resp = get('https://api.yourserver.com/',
 verify='your/certificate.bundle')
“But my awesome AntiVirus says your certificate is not trusted.”
— Windows User
~ Chapter 6 ~

Certificate Authorities Again
Hardly news: CAs are Broken
But why are the broken?
I Trust “TÜRKTRUST Elektronik Sertifika Hizmet Sağlayıcısı” to vouch for the identity of any domain on the planet.
trusting half the world: one shitty employee in one shitty CA is enough to break your security.
What we actually want:

I Trust “Comodo” to vouch for the identity of “Foo Owner” foo.com.

I only trust “Foo Owner” to vouch for the identity of api.foo.com
if you have seen *google.com* being from *Verisign* and all the sudden *google.com* becomes a *StartSSL* certificate you know something might be wrong.
Soon: Certificate Pinning?
Chapter 7

Frack OpenSSL and Question “Best Practices”
Self-Signed Certificates are not bad. Just in browsers.
NEVER. EVER. LOOK AT OpenSSL's SOURCE.
OpenSSL's "patches" are even worse: Apple's OpenSSL always trusts system store :-/
Requests by default trusts its own bundle :-/

(And does not even properly document how to use custom ones)
With Heartbleed SSL was less secure than no SSL :-)
~ Chapter 8 ~

Growing SSL
Credit Cards were made for thousands of people
Certificate Authorities were made for hundreds of sites
OpenSSL was probably improperly audited
See “OpenSSL Valhalla Rampage” :-(

“i give up. reuse problem is unfixable.
dlg says puppet crashes”

— tedu
Chapter 9

Plan for Failure
what do you mean, certificate revocation does not work?
what happens to your user if he gets hacked?

(food for thought: keyloggers are still a thing)
what happens to your data
what happens to your company
encryption is hardened security
it must not be your only defense
Feel Free To Ask Questions

Talk slides will be online on lucumr.pocoo.org/talks
You can find me on Twitter: @mitsuhiko
And gittip: gittip.com/mitsuhiko
Or hire me: armin.ronacher@active-4.com