The Catch in Rye @

Armin @mitsuhiko Ronacher

Who am I?

Armin @mitsuhiko Ronacher

Things you might know I worked on: Flask,
Werkzeug, Jinja, Pygments, Sphinx, LogBook,
itsdangerous, Click, MarkupSafe, Sentry, Babel, ...

...and then I disa;

So what did I do?

Poured a lot of time into Sentry
Started to enjoy the green pastures of Rust

A\ SENTRY

Code \, eaks. fix it faster

Application monitoring software considered "not bad" by 4 million developers.

)
ay
&y
components/Checkout.js (7] call
@’ 53 }),
DD 54 }) .catch((er¥F) => {
= oo return { ok: false, status: 500 };
= b
&’\\ if (!response.ok) {
|
y
Error L J Open this line in GitHub [P Open in Codecov
500 -1In
Now ‘ [response.status, response.statusText || 'Internal Server Error'].join(
)
Q .
(©)

A language empowering everyone
to build reliable and efficient software.

» Let's not kid ourselves: it's bloody complicated

* Yet as a programmer you're surprisingly productive with 1t
» The ecosystem has excellent DX

» The language values backwards compatibility

» The language values innovation and progress

Going back in Time ()

» I picked up Rust properly when I used Python 2 actively
» Cargo was not yet a thing

 Python 3 was in a state of very slow and painful adoption

The Zen of Python

“There should be one — and
preferably only one — obvious
way to do it.”

The Zen of Python (cont.)

“Special cases aren't special
enough to break the rules.”

Packaging definitely isn't a
spectal case

[Saw The Light

» Packaging doesn't have to be painful
» Downloading the compiler/interpreter doesn't have to be painful
 Switching between compiler/interpreter versions can be trivial

» One can have the same experience on Linux, macOS, and Windows

HOW STANDARDS PROUFERATE:

(SEB A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC>

SITUATION:

THERE ARE
4 COMPETING
STANDPRDS.

17! RiDICULOUS!

WE NEED 70 DEVELOP

ONE UNIVERSAL STANDARD

THAT COVERS EVERYONE'S
USE CRSES. e

\O @2)

A

SCON:

SITUATION:

THERE ARE
15 COMPETING
STANDPRDS.

Should Rye Exist? #6
mitsuhiko started this conversation in General

@ mitsuhiko on Apr 23, 2023 Maintainer

We all know XKCD #927:

HOW STANDARDS PROUFERATE:
(SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

11?! RiDICULOUS!] GOON:
WE NEED To DEVELOP
, ONE UNNERSAL STANDARD ,
OITUATION: THAT COVERS EVERYONES SITUATION:
THERE ARE USE CASES. viep THERE ARE
|4 COMPETING \) 15 COMPETING
STANDPRDS. O @? STANDPRDS.

This is how | feel about all the Python packaging. And this is why | never wanted to publish rye and kept it for myself.
It's also incredibly hacky internally because it was never intended to be shared. However | really like what it does (at
least in theory) and | desperately want it to exist.

G (ERsY_ INSTALD« — $PYFHONPF\TH

ety 5

EBRE\»’ G\NOT HER PIPD

/ y ‘(THON ORG

@5 Pmo@ H%r:ng%%\é | NARY (2.6
(r’us\ / /
FOLDERS /

'??? ?—-> OUNED BY N

\\3/ }wh‘on/

~/newenv/

ROOT)
Just/local /Cellohv i
~|_[/usrllocal/1ib/ python3.6
/U5f‘ /local/opt Loy > /usr/local/Iib/ python2.7

(A BUNCH OF PATHS WITH “FRAMEWORKS" IN THEM SOMEWHERE)/

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED
THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

 The only goal is to dominate

» If it does not dominate, something else should

0 to 100

mitsuhiko at cheetah in =~

$

Getting Pythons @

mitsuhiko at cheetah in =~

$

[.ocktiles @

bat requirements.lock

File: requirements.lock

generated by rye
use rye lock™ or ‘rye sync to update this lockfile
#
last locked with the following flags:
pre: false
features: []
all-features: false
with-sources: false
generate-hashes: false
universal: false

-e file:.
asgiref=3.8.1

via django
blinker=1.8.2

via flask
click=8.1.7

via flask
django=5.0.7

via hello-world
flask=3.0.3

via hello-world
itsdangerous=2.2.0

via flask
jinja2=3.1.4

via flask
markupsafe=2.1.5

via jinja2

via werkzeug
sqlparse=0.5.0

via django
werkzeug=3.0.3

via flask

Virtual Env Management @

~[hello-world

mitsuhiko at cheetah in ~/hello-world on git:main?7

$

HSERMHL

» I do not work for Astral
» I gave Rye's stewardship to Astral
 uv — today — is a replacement for pip-tools/pip/venv

» uv tomorrow will fully replace the need of Rye by absorbing it in spirit

Does it work?

* Yes, but there are issues

» Many of the issues are not technical challenges

So what the the challenges?

» Dev Dependencies

» Local Dependencies

» Workspaces

» pyproject.toml Limitations (PEP 508)
» Single Version Resolution

» Good Python Builds

Resolver 1s Solved

uv s pretty damn fast. You should use 1t.

Dev Dependencies

 Every Tool invents dev dependencies

« Some could benefit from isolation
» black, ruff, ...

e Others do not work with isolation
* pytest, ...

 Others are mixed
- flakes, ...

Dev Dependencies

» There is no standard, everyone invents one

» Potential solution:
* reserve a 'dev" extra group

» add a "tool" dependency group?

= "README.md"
= "> 3.8"

[build-system]
= ["hatchling"]

= "hatchling.build"

[tool.ryel]
= true
= [
"click=8.1.7",
]

[tool.hatch.metadatal]
= true

bat pyproject.toml

"armin.ronacher@active-4.com" }

Local Dependencies

» How do you depend on a local packager

00 ~[hello-world

mitsuhiko at cheetah in ~/hello-world on git:main?7

$ rye add --path=../other-dep other-dep

Added other-dep @ file:///Users/mitsuhiko/hello-world/../other-dep as regular dependency
Reusing already existing virtualenv

Generating production lockfile: /Users/mitsuhiko/hello-world/requirements.lock
Generating dev lockfile: /Users/mitsuhiko/hello-world/requirements-dev.lock

Installing dependencies 000 bat pyproject.toml
Resolved 12 packages in 4ms
Built hello-world @ file:///Users/mitsuhiko/hello-world

Prepared 1 package in 203ms File: pyproject.toml

Uninstalled 1 package in 0.44ms _

Installed 1 package in 0.87ms [project]

- hello-world=0.1.0 (from file:///Users/mitsuhiko/hello-world) name = "hello-wortld"

+ hello-world=0.1.0 (from file:///Users/mitsuhiko/hello-world) version = "0.1.0"
Done! description = "Add your description here"

authors = [

mitsuhiko at cheetah in ~/hello-world on git:main?7] { name = "Armin Ronacher", email = "armin.ronacher@active-4.com" }
$

dependencies = [
"flask=23.0.3",
"django=5.0.7",
"other-dep @ file:///Users/mitsuhiko/hello-world/../other-dep",

]
readme = "README.md"

requires-python = "= 3.8"

Local Dependencies

» What about temporary overrides?
« What about editable installs?
» No standard relative path URL syntax

» Potential solution: adjacent config to override packages

00 [hello -world

File: .pyproject.local.toml

[dependencies.overrides.other-dep]
= "../other-dep"
= true

mitsuhiko at cheetah in ~/hello-world on git:main?8

$

Workspaces

» Multi-dependency projects are important

C N N ~/my-workspace

mitsuhiko at cheetah in ~/my-workspace on git:main?8
$ rye show
project: my-workspace
path: /Users/mitsuhiko/my-workspace
venv: /Users/mitsuhiko/my-workspace/.venv
target python: 3.12
venv python: cpython@3.12.1
virtual: true
workspace: /Users/mitsuhiko/my-workspace
members:
my-workspace (./)
dependency-a (./dependency-a)
dependency-b (./dependency-b)
configured sources:
default (index: https://pypi.org/simple/)

mitsuhiko at cheetah in ~/my-workspace on git:main?8

$

File: dependency-a/pyproject.toml

[project]
name = "dependency-a"
version = "0.1.0"

bat pyproject.toml

[tool.rye]

managed = true
virtual = true
dev-dependencies = []

[tool.rye.workspace]
members = ["dependency-*"]

description = "Add your description here"

authors = [

{ name = "Armin Ronacher", email = "armin.ronacher@active-4.com" }

]

dependencies = [
"dependency-b"

]
readme = "README.md"

requires-python = "= 3.12"
[build-system]

requires = ["hatchling"]
build-backend = "hatchling.build"

[tool.rye]

Workspaces

» But they don't work well yet
» They are Rye proprietary

 Again run into challenges with relative paths

pyproject.toml Limitations

» Dependency string array is too limiting

» Where do you store dependency
attached meta information?

bat pyproject.toml

[project] _—
» Impossible to encode even more L
into these strings without breaking epepgencies = [

b * "more-itertools=4.0.0,<6.0.0;python_version<\"2.7\"",
alre ady eX]. Stlng tO OlS "more-itertools =4.0.0;python_version>\"2.7\"",

]
= "README.md"
="z 3.12"

» Who can write these strings? e P hacomang

= "hatchling.build"

[tool.rye]

pyproject.toml Limitations

» Why do you need meta information?
» Pick the right index (PyPI vs internal)

» Git checkout, local paths, multi-version matches

Tool specific proprietary (even 1.f project.dependencics. Flasi
only temporary) extra information L R S
[project.dependencies.more-itertools]
{ . ="24.0.0,<6.0.0",
1 =">4.0.0",
]
= 42

Other Issues with pyproject.toml

» Dynamic metadata is a bad idea
» Already countless of proprietary extensions by different tools
+ Many different ways to define licenses

» Complex resolutions caused by markers

Portable Locking

000 ~|demo-project

¢ rye/uv Supp Ort eXp erimental File: requirements.lock

generated by rye

universal locking AR S

last locked with the following flags:
pre: false
features: []
all-features: false
with-sources: false
generate-hashes: false

» 1t does not yet have a stable and
supported cross platform lock format R

via flask
click=8.1.7
via flask
colorama=0.4.6 ; platform_system = 'Windows'

Y Th 1 : {4) # via click
e problem 1s "not easy Flask=3 0.3
via demo-project
itsdangerous=2.2.0
via flask
jinja2=3.1.4
via flask
markupsafe=2.1.5
via jinja2
via werkzeug
pywin32=306 ; platform_system = 'Windows'
via demo-project
werkzeug=3.0.3
via flask

HOHF OH H H HE R K

mitsuhiko at cheetah in ~/demo-project on git:main?7

$ |

Single Version Resolution

ca>=1

a<l

» How can you ever find a solution?

» Rust/Node: permits multi-version resolutions

» Issues: sys.modules (though solvable), C-extension modules (CABI)

Technically Solvable

» https://github.com/mitsuhiko/multiversion/

» Demonstration of multi-version imports on Python 2

» What would be the benefit? Smoother ecosystem upgrades

https://github.com/mitsuhiko/multiversion/

Good Python Builds

» We need PEP 711: PyBI: a standard format for distributing Python
Binaries

ALL MODERN DIGITAL
INFRASTRUCTURE

» indygreg builds are great, but have portability
issues (bad CFLAGS, missing readline, ...)

» Not an official project, run by a single person

—1 A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING
SINCE 2003

We are so close to solving 1t

What can stand in the way
1s only ourselves

Beware: “I got this”

» https://x.com/mitsuhiko
» https://rve.astral.sh/
» https://github.com/astral-sh/uv

https://x.com/mitsuhiko
https://rye.astral.sh/
https://github.com/astral-sh/uv

