
Armin @mitsuhiko Ronacher

Seeding Change and Lessons Learned
The Catch in Rye

Who am I?

Armin @mitsuhiko Ronacher
Things you might know I worked on: Flask,
Werkzeug, Jinja, Pygments, Sphinx, LogBook,
itsdangerous, Click, MarkupSafe, Sentry, Babel, …

… and then I disappeared …

So what did I do?

Poured a lot of time into Sentry
 Started to enjoy the green pastures of Rust

Rust
A language empowering everyone
to build reliable and efficient software.

• Let's not kid ourselves: it's bloody complicated

• Yet as a programmer you're surprisingly productive with it

• The ecosystem has excellent DX

• The language values backwards compatibility

• The language values innovation and progress

Going back in Time (~2014)

• I picked up Rust properly when I used Python 2 actively

• Cargo was not yet a thing

• Python 3 was in a state of very slow and painful adoption

The Zen of Python

“There should be one — and
preferably only one — obvious
way to do it.”

The Zen of Python (cont.)

“Special cases aren't special
enough to break the rules.”

Packaging definitely isn't a
special case

I Saw The Light

• Packaging doesn't have to be painful

• Downloading the compiler/interpreter doesn't have to be painful

• Switching between compiler/interpreter versions can be trivial

• One can have the same experience on Linux, macOS, and Windows

Meet Rye!

• The only goal is to dominate

• If it does not dominate, something else should

• “I just want it solved”

0 to 100

Getting Pythons

Lockfiles

Virtual Env Management

• I do not work for Astral

• I gave Rye's stewardship to Astral

• uv — today — is a replacement for pip-tools/pip/venv

• uv tomorrow will fully replace the need of Rye by absorbing it in spirit

Does it work?

• Yes, but there are issues

• Many of the issues are not technical challenges

So what the the challenges?

• Dev Dependencies

• Local Dependencies

• Workspaces

• pyproject.toml Limitations (PEP 508)

• Single Version Resolution

• Good Python Builds

Resolver is Solved

uv is pretty damn fast. You should use it.

Dev Dependencies

• Every Tool invents dev dependencies

• Some could benefit from isolation
• black, ruff, …

• Others do not work with isolation
• pytest, …

• Others are mixed
• flake8, …

Dev Dependencies

• There is no standard, everyone invents one

• Potential solution:

• reserve a "dev" extra group

• add a "tool" dependency group?

Local Dependencies

• How do you depend on a local package?

Local Dependencies

• What about temporary overrides?

• What about editable installs?

• No standard relative path URL syntax

• Potential solution: adjacent config to override packages

Workspaces

• Multi-dependency projects are important

Workspaces

• But they don't work well yet

• They are Rye proprietary

• Again run into challenges with relative paths

pyproject.toml Limitations

• Dependency string array is too limiting

• Where do you store dependency
attached meta information?

• Impossible to encode even more
into these strings without breaking
already existing tools

• Who can write these strings?

pyproject.toml Limitations

• Why do you need meta information?

• Pick the right index (PyPI vs internal)

• Git checkout, local paths, multi-version matches

• Tool specific proprietary (even if
only temporary) extra information

Other Issues with pyproject.toml

• Dynamic metadata is a bad idea

• Already countless of proprietary extensions by different tools

• Many different ways to define licenses

• Complex resolutions caused by markers

Portable Locking

• rye/uv support experimental
universal locking

• it does not yet have a stable and
supported cross platform lock format

• The problem is “not easy”

Single Version Resolution

• a >= 1

• a < 1

• How can you ever find a solution?

• Rust/Node: permits multi-version resolutions

• Issues: sys.modules (though solvable), C-extension modules (CABI)

Technically Solvable

• https://github.com/mitsuhiko/multiversion/

• Demonstration of multi-version imports on Python 2

• What would be the benefit? Smoother ecosystem upgrades

https://github.com/mitsuhiko/multiversion/

Good Python Builds

• We need PEP 711: PyBI: a standard format for distributing Python
Binaries

• indygreg builds are great, but have portability
issues (bad CFLAGS, missing readline, …)

• Not an official project, run by a single person

We are so close to solving it

What can stand in the way
is only ourselves

Beware: “I got this”

fin.

• https://x.com/mitsuhiko

• https://rye.astral.sh/

• https://github.com/astral-sh/uv

https://x.com/mitsuhiko
https://rye.astral.sh/
https://github.com/astral-sh/uv

