
Rust at Sentry
7 Years Later

Armin @mitsuhiko Ronacher



What ’s happening?



Who am I

● Armin Ronacher
● @mitsuhiko
● https://lucumr.pocoo.org/
● I love Open Source
● Flask, Insta, Jinja2, MiniJinja, …

https://lucumr.pocoo.org/


What’s Sentry

● https://sentry.io/
● Error and Crash Monitoring
● Application Performance Monitoring
● Session Replays etc.
● Open Source (*)
● A Python Shop

*: some is BUSL licensed with a 3 year Apache 2 cliff

https://sentry.io/


Errors and Crashes



Replays



Profiles



Traces



Why Rust?

● Initially personal interest
● Was really good for redistribution (sentry-cli)
● Was really nice to expose to Python
● Over time: we quite like it
● Predictable at runtime
● Tooling is really good



A Company’s Origin Story is a Legend

● Memory gets foggy over time
● Technology choices are less well informed and more incidental
● Is Jane Street really successful because of OCaml?



Rust @ Sentry Stats

● rust libraries + services: 180kLOC
● Sentry Python Monolith: 455kLOC
● Sentry TypeScript SPA: 612kLOC

Third most popular language by LOC



Why we picked it



Predictable Runtime Behavior

● Feels like Python
● No whacky memory behavior

○ (aside from suffering of fragmentation — hi jemallocator)
● CPU usage mostly stays predictable
● Performs well for a long time



Fits into Python

● Great at extension modules
● For us: cffi + milksnake (do not use!)
● Nowadays: PyO3 + maturin



Unexpected Wins



Rust is Outbound

● We quite actively contribute to external crates in Rust
● We rarely do so in Python
● Fork and depend on fork works well!
● Cargo as tooling changes behavior



Standardized Tooling

● One code style
● Almost universally embraced lints
● Rather well established patterns
● Jumping between code-bases feels natural
● Moving code between crates is trivial
● Painless compiler upgrades



The DX is Dope

● cargo
● rustup
● rust-analyzer
● docs (std + crate)



Types and Borrow Checker

● Modern Rust makes you a better programmer
● Types for the most part are helpful
● Borrow checker is not too annoying any more
● Makes you suspicious of a lot of Python code



Unexpected Issues



Why is there so much memmove?

● Large error types
● String::clone and friends



Large Result Types (Large Errors)

● The compiler sometimes is bad at optimizing result mapping



Shlemiel the Painter

● Work gets progressively harder
● Classic case: cstrings (strcat)
● But also OFFSET + LIMIT in SQL

Rust has a family of performance issues that are related

● Fear of lifetimes cause bad lookups
● String assigns become string clones



Shlemiel Paints the Entire Street For Every Dot

● Add an offset to N tokens, clone entire source for every token



Strings are … not optimal

● Maybe we should use more Arc<str>?
● But Arc<str> is not particularly efficient
● String’s extra capacity is odd in public APIs
● Similar issue with Vec<u8> (broadcast to N sockets)



WTB



Errors

● Still no stack trace on std::error::Error
● Errors don’t have names (parsing Debug output)



Life Before Main / Registry

● We would love a supported #[ctor]
● Or a way to register startup functions



Async and Tokio



From Actix to Running our own Show

● Started out with actix + actix-web
● Actor frameworks feel great
● Backpressure management is a giant pain and messy
● Moved from pre-tokio 1.0 to async/await



How I learned to love the async Bomb

● Use less async
● Use More Channels
● Embrace Backpressure
● (Cancellations are still hard)



Rust is Good For Us



Rust Community: Let ’s talk



Some Thoughts

● Nobody is perfect
● Building things is hard
● Good intentions can still result in bad outcomes
● Rust made it this far, let’s work on it together
● We all are more nuanced in Person




