Armin @mitsuhiko Ronacher

Whal 5 JWW?

wWho am

Armin Ronacher

@mitsuhiko
https://lucumr.pocoo.org/

I love Open Source

Flask, Insta, Jinja2, MiniJinja, ...

https://lucumr.pocoo.org/

https://sentry.io/

Error and Crash Monitoring
Application Performance Monitoring
Session Replays etc.

Open Source (*)

A Python Shop

*: some is BUSL licensed with a 3 year Apache 2 cliff

https://sentry.io/

Frors an!

Js

Stack Trace Most Relevant Full Stack Trace 11 Newest v

TypeError

i?.filter is not a function

mechanism generic handled

./app/components/forms/fields/sentryMemberTeamSelectorField.tsx in ensureUserlds at line 37:21 @ InApp) ~
32 const currentItems = form?.getValue(props.name) as string[] | null;

33

34 // Ensure the current value of the fields members is loaded

35 const ensureUserIds = useMemo(

36 O =

currentItems?.filter(item => item.startsWith('member:')).map(user => user.slice(7)),

O Open this line in GitHub

38 [currentItems]

39):

40 useMembers({ids: ensureUserIds});

41

42 const {

Called from: ../node_modules/react-dom/cjs/react-dom.profiling.min.js in Hh.useMemo @ System v
./app/components/forms/fields/sentryMemberTeamSelectorField.tsx in SentryMemberTeamSelectorField at line 35:25 @ InApp) v

Called from: ../node_modules/react-dom/cjs/react-dom.profiling.min.js in Gh @ System = v

- Ary R arnn wan sranan aennns wenan

T kkdkkkkdkdkkhhd
oo
B T T

KRR R AR AR,

FERRRRRERNE AR REERRE ARAD AT AR RS

* wnn

® D> D>l o008 () 00:16 £

rA
Ld

Transaction

view.icnuc .

rofiles

SEILI y-apPLTUTUI yalLLaLAvIT I CACADTS

base.dispatch.execute: OrganizationReleasesEndpoint.get

c.. . base.paginate.on_results: OrganizationReleasesEndpoint

.. |serialize: ReleaseSerializer

serialize.get_attrs: ReleaseSerializer

|

Profile 0.00ms

Bottom Up Top Down

snuba_q..series fmissing span instrumentation: Missing span instrumentation

snuba_s..ses/"}
http.cl.s/snql
400.00ms
nLIFLon.esponse
HTTPCon..esponse
HTTPRes..e.begin
HTTPRes.._status
SocketI..eadinto

600.00ms

Self Time ©

38410ms 12.4%
242.23ms 7.8%
190.59ms 6.1%

Total Time C

80.12ms 2.6%

70.31ms 2.3%

63.04ms 2.0%

384.10ms
242.23ms
190.59ms

80.12ms
70.31ms
63.04ms

12.4%
7.8%
61%
2.6%
2.3%
2.0%

800.00ms

v
&

[IR B

All Frames Application Frames System Frames

1.00s 1.20s
SLLmELeX . __NeXt__

_timelex.get_token

Collapse recursion

Frame

>

_timelex.get_token
SocketlO.readinto
SocketlO.readinto
SocketlO.readinto
—Host.readline

tzlocal.tzname

1.40s

1.60s

1.80s
wi.er

St.ve
wr.er
Ca.ve
wr.er
PG..ve
Ba.he
se..od
il
Ba.et
Cl.et
Cl.et

S.8
s.}
h.l

2.20s
Wl

St.e
wr.r
Ca.e
Wr.
PG..c
Ba.e
se.d
el
Ba..:
Cl.x
Cl.x

2.40s

wrapper
Static.solve
wrapper
Cachin.solve
wrapper
PGStri.solve
BaseMa..cache
sentry..ethod
-instr.._call
BaseMe..e.get
Client.get
Cl:ent._get

2.60s

2.80s
ALirFG.aLopen

HTTPC..quest
HTTPC..ponse
HTTPC..ponse
HTTPR..begin
HTTPR..tatus
Socke..dinto

&

Transaction Environment

Model: unknown
Manufacturer: unknown
Classification: unknown

0S: Linux

0S Version: 5.10.162+
Locale: unknown

~
Mo Ll
ik || i
He || (R
G || S
i || [k
ik || i
sENsE

(n=Rui]

Filter v Q_ Search for spans

browser — DNS

browser — connect

browser — TLS/SSL

browser — request

browser — response

resource.link — https:/s1.sentry-cdn.com/_static/dis
resource.script — https://s1.sentry-cdn.com/_static/
resource.script — https://s1.sentry-cdn.com/_static/
resource.img — https://s1.sentry-cdn.com/_static/7¢
resource.script — https://js.stripe.com/v3/
resource.script — https://static.zdassets.com/ekr/sni
ui.long-task — Main Ul thread blocked

mark — head-start

measure — app.page.body-load

measure — app.page.bundle-load

resource.script — https:/s1.sentry-cdn.com/_static/
resource.script — https:/s1.sentry-cdn.com/_static/
resource.script — https:/s1.sentry-cdn.com/_static/
resource.script — https:/s1.sentry-cdn.com/_static/
resource.script — https://cdn.pendo.io/agent/static/c
mark — head-end

paint — first-paint

@ http.client 5022.4ms 25%
@ uilong-task 3168ms 16%
@ resource.img 2252.6ms 11%

Other 9895.2ms 49%

0.00ms 2.290.45ms
— FCP FP
183 pageload — 8997f1880fdabd64
browser — cache | s3.30ms

I -7 .s0hs
R 35100
Il 44330ms

- 474,40ms
I 565.40ms
_ 847,00ms

] 83.00ms

_ 872,90ms
[1.073.00ms

175,70ms
173,90ms
174,30ms

174,30ms

580,10ms

,00ms

0.00ms

Web Vitals
Cumulative Layout Shift
0139

First Contentful Paint
1.858 seconds

First Paint
1.858 seconds

Largest Contentful Paint
@ 6.243 seconds

Time to First Byte
@ 1.494 seconds

Request Time
461.600 milliseconds

Custom Performance Metrics

allresources.encoded e
1.7 MiB

allresources.transfer sioin
1.7 MiB

bundle_load miein
1.07s

connection.rtt ves
50.00ms

Initially personal interest
Was really good for redistribution (sentry-cli)
Was really nice to expose to Python
Over time: we quite like it
Predictable at runtime

Tooling is really good

A Company’s Origin Storyis a Legend

e Memory gets foggy over time
e Technology choices are less well informed and more incidental
e [sJane Street really successful because of OCaml?

Rust @ Sentry Stats

e rust libraries + services: 180kLOC
e Sentry Python Monolith: 455kLOC
e Sentry TypeScript SPA: 612KkLOC

Third most popular language by LOC

i r~ i
Q J// g

a)*“ i

Wé% W/Me///

Feels like Python

No whacky memory behavior
o (aside from suffering of fragmentation — hi jemallocator)

CPU usage mostly stays predictable
Performs well for a long time

RRSTT a g

ython

e Great at extension modules
e For us: cffi + milksnake (do not use!)
e Nowadays: PyO3 + maturin

Wing
//Wywé/

Rustis Cutbound

We quite actively contribute to external crates in Rust
We rarely do so in Python

Fork and depend on fork works well!
Cargo as tooling changes behavior

&

fooling

Standardized

One code style

Almost universally embraced lints

Rather well established patterns

Jumping between code-bases feels natural
Moving code between crates is trivial
Painless compiler upgrades

cargo

rustup
rust-analyzer
docs (std + crate)

Types and Borrow Checker

Modern Rust makes you a better programmer
Types for the most part are helpful

Borrow checker is not too annoying any more
Makes you suspicious of a lot of Python code

//WVW/MM

Why is there so much memmove?

e Large error types
e String::clone and friends

The compiler sometimes is bad at optimizing result mapping

pub struct Error {
repr: Box<ErrorRepr>,

struct ErrorRepr {
kind: ErrorKind,
detail: Option<Cow<'static, str>>,
name: Option<String>,
lineno: usize,
span: Option,
source: Option<Box<dyn std::error::Error + Send + Sync>>,
#[cfg(feature = "debug")]

debug_info: Option<crate::debug: :DebugInfo>,

Shiemiel the Painter

e Work gets progressively harder
e Classic case: cstrings (strcat)
e But also OFFSET + LIMIT in SQL

Rust has a family of performance issues that are related

e Fear of lifetimes cause bad lookups
e String assigns become string clones

src/types.rs [Y

let name = original.get_name(token.name_id);

let source = original.get_source(token.src_id);

if let Some(source) = source {

let contents = original.get_source_contents(token.src_id);

let new_id = builder.add_source(source);
builder.set_source_contents(new_id, contents);
if l!builder.has_source_contents(token.src_id) {
if let Some(source) = source {
let contents = original.get_source_contents(token.src_id);
let new_id = builder.add_source(source);

builder.set_source_contents(new_id, contents);

let dst_line = (token.dst_line as i32 + line_diff) as u32;

Strings are ... not optimal

Maybe we should use more Arc<str>?

But Arc<str> is not particularly efficient

String’s extra capacity is odd in public APIs

Similar issue with Vec<u8> (broadcast to N sockets)

cirrors

e Still no stack trace on std::error::Error
e Errors don’t have names (parsing Debug output)

2 iR BE o BES
iy Bt 14 SR] P
ife Before Main / i

egistiy

e We would love a supported #[ctor]
e Or a way to register startup functions

%/ﬂam/ﬁ%/ﬂ

T

s .. &
o W@ m =
73] A
7] g

\etix to R

e Started out with actix + actix-web

e Actor frameworks feel great

e Backpressure management is a giant pain and messy
e Moved from pre-tokio 1.0 to async/await

How [learned to love the async Bomb

Use less async
Use More Channels
Embrace Backpressure

[
[
[
e (Cancellations are still hard)

Touslis (oo for Uy

Y&M[Kﬂ/ﬂ/ﬂfl/ﬂ%[ﬂfj il

Some Thoughts

Nobody is perfect

Building things is hard

Good intentions can still result in bad outcomes
Rust made it this far, let’s work on it together
We all are more nuanced in Person

