
Armin @mitsuhiko Ronacher

Rust API Design Learnings
Lessons learned from building Rust libraries



Who am I

• Armin Ronacher


• twitter.com/@mitsuhiko | hachyderm.io/@mitsuhiko


• Python since time immemorial, Rust since 2012


• Python: Flask, Jinja, Werkzeug, …


• Rust: Insta, MiniJinja, Console, Indicatif, Similar

https://twitter.com/@mitsuhiko
http://hachyderm.io/@mitsuhiko


unnamed developer of a popular Rust crate

“Sorry, I have no interest in making that style of coding 
easier. I want users to consciously choose what 
config they're using. I view blindly picking a default as 
a mistake […]”



APIs are Important

• A library's author's true success metrics are:


• how successful all users are in using the API


• the quality of the output that users achieve by using the API


• the percentage of users making the correct choices



Your User Matters

• When you build a library you should treat it like any other thing


• Define success metrics


• Measure yourself



But we are Flying Blind

• Library developers typically fly blind


• The only metrics we have is download stats, which mostly correlate with CI 
setups, and not true utilization


• User frustration is often the only other form of feedback we get


• We need extrapolation from user surveys and interviews


• In the absence of this, personal frustration and issues is a good proxy



Values: Metrics without Measuring

• If we have trouble measuring, metrics are not useless


• Metrics often express what we believe is important


• Values can steer us



Values and Metrics



My Values

• Concise: easy to get started


• Good Defaults: easy to get started, trivial to stay on the golden path as it 
changes


• Small Surface Area: enable room to breath and innovate, without breaking 
users


• Backwards compatible: avoid unnecessary churn to keep users on the golden 
path



The Golden Path



The Golden Path

• An opinionated path for how to build


• That path might change over time


• Change requires adjustment by users


• Fast change means users being left behind


• Measuring success: users on the golden path (not churning, not staying on 
old versions, not hating the upgrade experience, not using old patterns)



Defaults Matter



Use Defaults to Fight Cargo Cult 

• Defaults are hard and of two types:


• Absolute defaults that cannot be changed (i32::default() -> 0)


• Defaults that allow a level of flexibility (Default Hasher: SipHash)


• For defaults to allow flexibility, care has to be taken:


• Set rules and expectations about stability


• Aim for some level of change



Good Defaults

• Default Hasher:


• Hasher is documented to be non portable


• Hasher is documented to change


• No expectation around cross-version/process stability


• A better hasher can be picked, all code ever written benefits at once



Cargo Cult

• Imagine mandatory hasher


• People would cargo cult some default 
hasher that they see elsewhere or in 
the docs.


• New hasher comes around, lots of code 
stuck with the old choice.



Defaults and Protocols

• What if this hash becomes part of a protocol?


• If you have an API that drives a protocol, consider that protocol to consider 
defaults


• This approach can only be guidance, a lot of situations do not allow it.



Less is More



More API = More Problems

• The larger the surface, the more of it ends up used


• Less commonly used APIs have the most leaky abstractions


• Inhibits future change: "does someone even use this?"



Hide API Behind Common Abstractions

• Developers are used to these patterns, they are worth exploring:


• Into<T>


• AsRef<T>


• Careful: surface area stays large, but large bound to common and simple 
patterns



Into

• Common pairs:


• Into<String>


• Into<Cow<'_, T>>


• Into<YourRuntimeType>


• ToString can be sometimes an interesting alternative to Into<String>



AsRef<T>

• Related in Into, but for borrowing


• Abstracts over


• &String/&str/&Cow<'_, str>


• &PathBuf/&Path


• &[u8]/&Vec<u8>/&String/&str



Monomorphization & Compile Times

• Rust loves to inline


• All those different types create 
duplicated generated code


• Example: isolate conversions and 
call into shared functions to 
reduce the total amount of copied 
code.



Hide the Onion but create the Onion

• Good APIs are Layered Like Onions


• Only provide the outermost layer first


• Keeps the inner layers flexibility to change


• Over time, consider exposing internal layers under separate stability 
guarantees



Layer 2 and 3

• Example: CompiledTemplate is 
entirely private, so is the 
CodeGenerator or the parser.


• It's still layered, and over time 
some functionality could be 
exposed.



Crate Structure



Explicit Exports

• Hide your internal structure, re-export sensibly


• Your folder structure does not matter to your users



Explicit Fake Modules

• Consider creating modules on the spot for utilities


• For instance "insta" has utility 
functions and types that are rarely 
useful. The ones I subscribe stability 
to are re-exported under a specific 
module.



Public but Hidden

• Sometimes stuff needs to be public, 
but you don't want anyone to use it.


• Common example: utility functionality 
for macros.


• Here both __context and 
__context_pair! are public but hidden



Traits



Traits are Tricky

• Traits are super useful, but they are tricky


• Fall into two categories:


• Sealed (user should not implement)


• Open (user should implement)



Sealed Traits

• Not really supported, doc hidden 
and hackery


• Example in MiniJinja: want to 
abstract over types, but I don't 
really want to let the user do that.



Full Seal

• Uses a private zero sized marker type somewhere


• User cannot implement or invoke as the type is private



Traits are Hard to Discover

• I avoid traits unless I know abstraction over implementations is necessary


• Did you notice that BTreeMap and HashMap are not expressed via traits?


• The usefulness of abstraction even for interchangeable types is sometimes 
unclear


• You can always add traits later



Common Traits



Debug

• Put it on all public types


• Consider it on your internal types behind a feature flag


• Super valuable for dbg!() and co



Display

• Makes the type have a representation in format!()


• It also gives it the `.to_string()` method


• Certain types need it in the contract (eg: all errors)


• Recommendation: avoid in most cases unless you implement a custom 
integer, string etc.



Copy and Clone

• Once granted, impossible to take away


• Neither can be universally provided


• Clone: really useful, consider adding


• If you ever feel you need to take it away, consider Arc<T> internally


• Copy: might inhibit future change, but really useful


• Some types regrettably do not have Copy (eg: Range) and people hate it



Sync and Send

• I cannot give recommendations


• The only one I have: non Send/Sync types are not that bad


• Consider them seriously



Lifetimes



Lifetimes and Libraries

• Try to avoid too clever setups


• Consider "Session" abstractions where people only need to temporarily hold 
on to data.



Borrowing to Self

• Rust is really bad at this, sometimes you build yourself into a corner


• Best tool I found to date for this is the self_cell crate


• Buffer can be held into itself



Erroring



Panic vs Error

• Try to avoid panics


• If you do need to panic, consider #[track_caller]



Errors Matter

• Spend some time designing your errors


• Errors deserve attention just as much as your other types


• A talk all by itself, so here the basics:


• Implement std::error::Error on your errors


• Implement source() if you think someone might want to peak into



Questions!


