
Jinja2 Documentation
Release 2.0

Armin Ronacher

April 29, 2008

CONTENTS

1 Introduction 3
1.1 Prerequisites . 3
1.2 Basic API Usage . 3

2 API 5
2.1 Basics . 5
2.2 High Level API . 5
2.3 Undefined Types . 8
2.4 Loaders . 9
2.5 Utilities . 11
2.6 Exceptions . 11

3 Template Designer Documentation 13
3.1 Synopsis . 13
3.2 Variables . 14
3.3 Filters . 14
3.4 Tests . 14
3.5 Comments . 14
3.6 Template Inheritance . 15
3.7 HTML Escaping . 16
3.8 List of Control Structures . 17
3.9 Expressions . 21
3.10 List of Builtin Filters . 23
3.11 List of Builtin Tests . 28

4 Indices and tables 29

Index 31

Index 33

i

ii

Jinja2 Documentation, Release 2.0

Contents:

Contents 1

2

CHAPTER

ONE

Introduction

This is the documentation for the Jinja2 general purpose templating language. Jinja2 is a library for
Python 2.4 and onwards that is designed to be flexible, fast and secure.

If you have any exposure to other text-based template languages, such as Smarty or Django, you should
feel right at home with Jinja2. It’s both designer and developer friendly by sticking to Python’s princi-
ples and adding functionality useful for templating environments.

The key-features are...

• ... configurable syntax. If you are generating LaTeX or other formats with Jinja you can change
the delimiters to something that integrates better into the LaTeX markup.

• ... fast. While performance is not the primarily target of Jinja2 it’s surprisingly fast. The overhead
compared to regular Python code was reduced to the very minimum.

• ... easy to debug. Jinja2 integrates directly into the python traceback system which allows you to
debug Jinja templates with regular python debugging helpers.

• ... secure. It’s possible to evaluate untrusted template code if the optional sandbox is enabled.
This allows Jinja2 to be used as templating language for applications where users may modify the
template design.

1.1 Prerequisites

Jinja2 needs at least Python 2.4 to run. Additionally a working C-compiler that can create python
extensions should be installed for the debugger. If no C-compiler is available the ctypes module should
be installed.

1.2 Basic API Usage

This section gives you a brief introduction to the Python API for Jinja templates.

The most basic way to create a template and render it is through Template. This however is not the
recommended way to work with it, but the easiest

>>> from jinja2 import Template
>>> template = Template(’Hello {{ name }}!’)
>>> template.render(name=’John Doe’)
u’Hello John Doe!’

By creating an instance of Template you get back a new template object that provides a method called
render() which when called with a dict or keyword arguments expands the template. The dict or
keywords arguments passed to the template are the so-called "context" of the template.

3

http://python.net/crew/theller/ctypes/

4

CHAPTER

TWO

API

This document describes the API to Jinja2 and not the template language. It will be most useful as
reference to those implementing the template interface to the application and not those who are creating
Jinja2 templates.

2.1 Basics

Jinja2 uses a central object called the template Environment. Instances of this class are used to store the
configuration, global objects and are used to load templates from the file system or other locations. Even
if you are creating templates from string by using the constructor of Template class, an environment
is created automatically for you.

Most applications will create one Environment object on application initialization and use that to load
templates. In some cases it’s however useful to have multiple environments side by side, if different
configurations are in use.

The simplest way to configure Jinja2 to load templates for your application looks roughly like this:

from jinja2 import Environment, PackageLoader
env = Environment(loader=PackageLoader(’yourapplication’, ’templates’))

This will create a template environment with the default settings and a loader that looks up the tem-
plates in the templates folder inside the yourapplication python package. Different loaders are available
and you can also write your own if you want to load templates from a database or other resources.

To load a template from this environment you just have to call the get_template() method which
then returns the loaded Template:

template = env.get_template(’mytemplate.html’)

To render it with some variables, just call the render() method:

print template.render(the=’variables’, go=’here’)

2.2 High Level API

class Environment(block_start_string=’{%’, block_end_string=’%}’, variable_start_string=’{{’, vari-
able_end_string=’}}’, comment_start_string=’{#’, comment_end_string=’#}’,
line_statement_prefix=None, trim_blocks=False, extensions=(), optimized=True,
undefined=<class ’jinja2.runtime.Undefined’>, finalize=None, autoescape=False,
loader=None)

The core component of Jinja is the Environment. It contains important shared variables like con-
figuration, filters, tests, globals and others. Instances of this class may be modified if they are

5

Jinja2 Documentation, Release 2.0

not shared and if no template was loaded so far. Modifications on environments after the first
template was loaded will lead to surprising effects and undefined behavior.

Here the possible initialization parameters:

block_start_string The string marking the begin of a block. Defaults to ’{%’.

block_end_string The string marking the end of a block. Defaults to ’%}’.

variable_start_string The string marking the begin of a print statement. Defaults to ’{{’.

comment_start_string The string marking the begin of a comment. Defaults to ’{#’.

comment_end_string The string marking the end of a comment. Defaults to ’#}’.

line_statement_prefix If given and a string, this will be used as prefix for line based statements.

trim_blocks If this is set to True the first newline after a block is removed (block, not variable
tag!). Defaults to False.

extensions List of Jinja extensions to use. This can either be import paths as strings or extension
classes.

optimized should the optimizer be enabled? Default is True.

undefined Undefined or a subclass of it that is used to represent undefined values in the tem-
plate.

finalize A callable that finalizes the variable. Per default no finalizing is applied.

autoescape If set to true the XML/HTML autoescaping feature is enabled.

loader The template loader for this environment.

shared
If a template was created by using the Template constructor an environment is created au-
tomatically. These environments are created as shared environments which means that mul-
tiple templates may have the same anonymous environment. For all shared environments
this attribute is True, else False.

sandboxed
If the environment is sandboxed this attribute is True. For the sandbox mode have a look at
the documentation for the SandboxedEnvironment.

filters
A dict of filters for this environment. As long as no template was loaded it’s safe to add new
filters or remove old.

tests
A dict of test funcitons for this environment. As long as no template way loaded it’s safe to
modify this dict.

globals
A dict of global variables. These variables are always available in a template and (if the
optimizer is enabled) may not be override by templates. As long as no template was loaded
it’s safe to modify this dict.

from_string(source, globals=None, template_class=None)
Load a template from a string. This parses the source given and returns a Template object.

get_template(name, parent=None, globals=None)
Load a template from the loader. If a loader is configured this method ask the loader for
the template and returns a Template. If the parent parameter is not None, join_path() is
called to get the real template name before loading.
The globals parameter can be used to provide compile-time globals. In the future this will
allow the optimizer to render parts of the templates at compile-time.
If the template does not exist a TemplateNotFound exception is raised.

join_path(template, parent)
Join a template with the parent. By default all the lookups are relative to the loader root so
this method returns the template parameter unchanged, but if the paths should be relative to
the parent template, this function can be used to calculate the real template name.
Subclasses may override this method and implement template path joining here.

6 Chapter 2. API

Jinja2 Documentation, Release 2.0

class Template()
The central template object. This class represents a compiled template and is used to evaluate it.

Normally the template object is generated from an Environment but it also has a constructor
that makes it possible to create a template instance directly using the constructor. It takes the
same arguments as the environment constructor but it’s not possible to specify a loader.

Every template object has a few methods and members that are guaranteed to exist. However it’s
important that a template object should be considered immutable. Modifications on the object are
not supported.

Template objects created from the constructor rather than an environment do have an environment
attribute that points to a temporary environment that is probably shared with other templates
created with the constructor and compatible settings.

>>> template = Template(’Hello {{ name }}!’)
>>> template.render(name=’John Doe’)
u’Hello John Doe!’

>>> stream = template.stream(name=’John Doe’)
>>> stream.next()
u’Hello John Doe!’
>>> stream.next()
Traceback (most recent call last):

...
StopIteration

render(*args, **kwargs)
This method accepts the same arguments as the dict constructor: A dict, a dict subclass or
some keyword arguments. If no arguments are given the context will be empty. These two
calls do the same:

template.render(knights=’that say nih’)
template.render({’knights’: ’that say nih’})

This will return the rendered template as unicode string.

stream(*args, **kwargs)
Works exactly like generate() but returns a TemplateStream.

generate(*args, **kwargs)
For very large templates it can be useful to not render the whole template at once but evaluate
each statement after another and yield piece for piece. This method basically does exactly
that and returns a generator that yields one item after another as unicode strings.
It accepts the same arguments as render().

module
The template as module. This is used for imports in the template runtime but is also useful
if one wants to access exported template variables from the Python layer:

>>> t = Template(’{% macro foo() %}42{% endmacro %}23’)
>>> unicode(t.module)
u’23’
>>> t.module.foo()
u’42’

class TemplateStream(gen)
A template stream works pretty much like an ordinary python generator but it can buffer multiple
items to reduce the number of total iterations. Per default the output is unbuffered which means
that for every unbuffered instruction in the template one unicode string is yielded.

If buffering is enabled with a buffer size of 5, five items are combined into a new unicode string.
This is mainly useful if you are streaming big templates to a client via WSGI which flushes after
each iteration.

disable_buffering()
Disable the output buffering.

2.2. High Level API 7

Jinja2 Documentation, Release 2.0

enable_buffering(size=5)
Enable buffering. Buffer size items before yielding them.

2.3 Undefined Types

These classes can be used as undefined types. The Environment constructor takes an undefined pa-
rameter that can be one of those classes or a custom subclass of Undefined. Whenever the template
engine is unable to look up a name or access an attribute one of those objects is created and returned.
Some operations on undefined values are then allowed, others fail.

The closest to regular Python behavior is the StrictUndefined which disallows all operations beside test-
ing if it’s an undefined object.

class Undefined(hint=None, obj=None, name=None)
The default undefined type. This undefined type can be printed and iterated over, but every other
access will raise an UndefinedError:

>>> foo = Undefined(name=’foo’)
>>> str(foo)
’’
>>> not foo
True
>>> foo + 42
Traceback (most recent call last):
...
jinja2.exceptions.UndefinedError: ’foo’ is undefined

class DebugUndefined(hint=None, obj=None, name=None)
An undefined that returns the debug info when printed.

>>> foo = DebugUndefined(name=’foo’)
>>> str(foo)
’{{ foo }}’
>>> not foo
True
>>> foo + 42
Traceback (most recent call last):
...
jinja2.exceptions.UndefinedError: ’foo’ is undefined

class StrictUndefined(hint=None, obj=None, name=None)
An undefined that barks on print and iteration as well as boolean tests and all kinds of compar-
isons. In other words: you can do nothing with it except checking if it’s defined using the defined
test.

>>> foo = StrictUndefined(name=’foo’)
>>> str(foo)
Traceback (most recent call last):
...
jinja2.exceptions.UndefinedError: ’foo’ is undefined
>>> not foo
Traceback (most recent call last):
...
jinja2.exceptions.UndefinedError: ’foo’ is undefined
>>> foo + 42
Traceback (most recent call last):
...
jinja2.exceptions.UndefinedError: ’foo’ is undefined

8 Chapter 2. API

Jinja2 Documentation, Release 2.0

2.4 Loaders

Loaders are responsible for loading templates from a resource such as the file system and for keeping
the compiled modules in memory. These work like Python’s sys.modules which keeps the imported
templates in memory. Unlike sys.modules however this cache is limited in size by default and templates
are automatically reloaded. Each loader that extends BaseLoader supports this caching and accepts
two parameters to configure it:

cache_size The size of the cache. Per default this is 50 which means that if more than 50 templates
are loaded the loader will clean out the least recently used template. If the cache size is set to 0
templates are recompiled all the time, if the cache size is -1 the cache will not be cleaned.

auto_reload Some loaders load templates from locations where the template sources may change (ie:
file system or database). If auto_reload is set to True (default) every time a template is requested the
loader checks if the source changed and if yes, it will reload the template. For higher performance
it’s possible to disable that.

class FileSystemLoader(searchpath, encoding=’utf-8’, cache_size=50, auto_reload=True)
Loads templates from the file system. This loader can find templates in folders on the file system
and is the preferred way to load them.

The loader takes the path to the templates as string, or if multiple locations are wanted a list of
them which is then looked up in the given order:

>>> loader = FileSystemLoader(’/path/to/templates’)
>>> loader = FileSystemLoader([’/path/to/templates’, ’/other/path’])

Per default the template encoding is ’utf-8’ which can be changed by setting the encoding pa-
rameter to something else.

class PackageLoader(package_name, package_path=’templates’, encoding=’utf-8’, cache_size=50,
auto_reload=True)

Load templates from python eggs or packages. It is constructed with the name of the python
package and the path to the templates in that package:

>>> loader = PackageLoader(’mypackage’, ’views’)

If the package path is not given, ’templates’ is assumed.

Per default the template encoding is ’utf-8’ which can be changed by setting the encoding pa-
rameter to something else. Due to the nature of eggs it’s only possible to reload templates if the
package was loaded from the file system and not a zip file.

class DictLoader(mapping, cache_size=50, auto_reload=False)
Loads a template from a python dict. It’s passed a dict of unicode strings bound to template
names. This loader is useful for unittesting:

>>> loader = DictLoader({’index.html’: ’source here’})

Because auto reloading is rarely useful this is disabled per default.

class FunctionLoader(load_func, cache_size=50, auto_reload=True)
A loader that is passed a function which does the loading. The function becomes the name of the
template passed and has to return either an unicode string with the template source, a tuple in the
form ‘(source, filename, uptodatefunc)’ or None if the template does not exist.

>>> def load_template(name):
... if name == ’index.html’
... return ’...’
...
>>> loader = FunctionLoader(load_template)

2.4. Loaders 9

Jinja2 Documentation, Release 2.0

The uptodatefunc is a function that is called if autoreload is enabled and has to return True if the
template is still up to date. For more details have a look at BaseLoader.get_source() which
has the same return value.

class PrefixLoader(mapping, delimiter=’/’, cache_size=50, auto_reload=True)
A loader that is passed a dict of loaders where each loader is bound to a prefix. The caching
is independent of the actual loaders so the per loader cache settings are ignored. The prefix is
delimited from the template by a slash:

>>> loader = PrefixLoader({
... ’app1’: PackageLoader(’mypackage.app1’),
... ’app2’: PackageLoader(’mypackage.app2’)
... })

By loading ’app1/index.html’ the file from the app1 package is loaded, by loading
’app2/index.html’ the file from the second.

class ChoiceLoader(loaders, cache_size=50, auto_reload=True)
This loader works like the PrefixLoader just that no prefix is specified. If a template could not be
found by one loader the next one is tried. Like for the PrefixLoader the cache settings of the actual
loaders don’t matter as the choice loader does the caching.

>>> loader = ChoiceLoader([
... FileSystemLoader(’/path/to/user/templates’),
... PackageLoader(’myapplication’)
])

This is useful if you want to allow users to override builtin templates from a different location.

All loaders are subclasses of BaseLoader. If you want to create your own loader, subclass
BaseLoader and override get_source.

class BaseLoader(cache_size=50, auto_reload=True)
Baseclass for all loaders. Subclass this and override get_source to implement a custom loading
mechanism. The environment provides a get_template method that calls the loader’s load method
to get the Template object.

A very basic example for a loader that looks up templates on the file system could look like this:

from jinja2 import BaseLoader, TemplateNotFound
from os.path import join, exists, getmtime

class MyLoader(BaseLoader):

def __init__(self, path, cache_size=50, auto_reload=True):
BaseLoader.__init__(self, cache_size, auto_reload)
self.path = path

def get_source(self, environment, template):
path = join(self.path, template)
if not exists(path):

raise TemplateNotFound(template)
mtime = getmtime(path)
with file(path) as f:

source = f.read().decode(’utf-8’)
return source, path, lambda: mtime != getmtime(path)

get_source(environment, template)
Get the template source, filename and reload helper for a template. It’s passed the envi-
ronment and template name and has to return a tuple in the form ‘(source, filename,
uptodate)’ or raise a TemplateNotFound error if it can’t locate the template.
The source part of the returned tuple must be the source of the template as unicode string
or a ASCII bytestring. The filename should be the name of the file on the filesystem if it was

10 Chapter 2. API

Jinja2 Documentation, Release 2.0

loaded from there, otherwise None. The filename is used by python for the tracebacks if no
loader extension is used.
The last item in the tuple is the uptodate function. If auto reloading is enabled it’s always
called to check if the template changed. No arguments are passed so the function must store
the old state somewhere (for example in a closure). If it returns False the template will be
reloaded.

load(environment, name, globals=None)
Loads a template. This method looks up the template in the cache or loads one by calling
get_source(). Subclasses should not override this method as loaders working on collec-
tions of other loaders (such as PrefixLoader or ChoiceLoader) will not call this method
but get_source directly.

2.5 Utilities

These helper functions and classes are useful if you add custom filters or functions to a Jinja2 environ-
ment.

environmentfilter(f)
Decorator for marking evironment dependent filters. The environment used for the template is
passed to the filter as first argument.

contextfilter(f)
Decorator for marking context dependent filters. The current context argument will be passed as
first argument.

environmentfunction(f)
This decorator can be used to mark a callable as environment callable. A environment callable is
passed the current environment as first argument if it was directly stored in the context.

contextfunction(f)
This decorator can be used to mark a callable as context callable. A context callable is passed the
active context as first argument if it was directly stored in the context.

escape(s)
Convert the characters &, <, >, and " in string s to HTML-safe sequences. Use this if you need to
display text that might contain such characters in HTML. This function will not escaped objects
that do have an HTML representation such as already escaped data.

class Markup()
Marks a string as being safe for inclusion in HTML/XML output without needing to be escaped.
This implements the __html__ interface a couple of frameworks and web applications use.

The escape function returns markup objects so that double escaping can’t happen. If you want to
use autoescaping in Jinja just set the finalizer of the environment to escape.

2.6 Exceptions

class TemplateError()
Baseclass for all template errors.

class UndefinedError()
Raised if a template tries to operate on Undefined.

class TemplateNotFound(name)
Raised if a template does not exist.

class TemplateSyntaxError(message, lineno, name)
Raised to tell the user that there is a problem with the template.

class TemplateAssertionError(message, lineno, name)

2.5. Utilities 11

Jinja2 Documentation, Release 2.0

Like a template syntax error, but covers cases where something in the template caused an error at
compile time that wasn’t necessarily caused by a syntax error.

12 Chapter 2. API

CHAPTER

THREE

Template Designer Documentation

This document describes the syntax and semantics of the template engine and will be most useful as
reference to those creating Jinja templates. As the template engine is very flexible the configuration from
the application might be slightly different from here in terms of delimiters and behavior of undefined
values.

3.1 Synopsis

A template is simply a text file. It can generate any text-based format (HTML, XML, CSV, LaTeX, etc.).
It doesn’t have a specific extension, .html or .xml are just fine.

A template contains variables or expressions, which get replaced with values when the template is
evaluated, and tags, which control the logic of the template. The template syntax is heavily inspired by
Django and Python.

Below is a minimal template that illustrates a few basics. We will cover the details later in that docu-
ment:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>

<title>My Webpage</title>
</head>
<body>

<ul id="navigation">
{% for item in navigation %}

{{ item.caption }}
{% endfor %}

<h1>My Webpage</h1>
{{ a_variable }}

</body>
</html>

This covers the default settings. The application developer might have changed the syntax from ‘{%
foo %}’ to ‘<% foo %>’ or something similar.

There are two kinds of delimiers. ‘{% ... %}’ and ‘{{ ... }}’. The first one is used to execute
statements such as for-loops or assign values, the latter prints the result of the expression to the tem-
plate.

13

Jinja2 Documentation, Release 2.0

3.2 Variables

The application passes variables to the templates you can mess around in the template. Variables may
have attributes or elements on them you can access too. How a variable looks like, heavily depends on
the application providing those.

You can use a dot (.) to access attributes of a variable, alternative the so-called "subscribe" syntax ([])
can be used. The following lines do the same:

{{ foo.bar }}
{{ foo[’bar’] }}

It’s important to know that the curly braces are not part of the variable but the print statement. If you
access variables inside tags don’t put the braces around.

If a variable or attribute does not exist you will get back an undefined value. What you can do with
that kind of value depends on the application configuration, the default behavior is that it evaluates to
an empty string if printed and that you can iterate over it, but every other operation fails.

3.3 Filters

Variables can by modified by filters. Filters are separated from the variable by a pipe symbol (|) and
may have optional arguments in parentheses. Multiple filters can be chained. The output of one filter
is applied to the next.

‘{{ name|striptags|title }}’ for example will remove all HTML Tags from the name and title-
cases it. Filters that accept arguments have parentheses around the arguments, like a function call. This
example will join a list by spaces: ‘{{ list|join(’, ’) }}’.

The List of Builtin Filters below describes all the builtin filters.

3.4 Tests

Beside filters there are also so called "tests" available. Tests can be used to test a variable against a
common expression. To test a variable or expression you add is plus the name of the test after the
variable. For example to find out if a variable is defined you can do ‘name is defined’ which will
then return true or false depening on if name is defined.

Tests can accept arguments too. If the test only takes one argument you can leave out the parentheses
to group them. For example the following two expressions do the same:

{% if loop.index is divisibleby 3 %}
{% if loop.index is divisibleby(3) %}

The List of Builtin Tests below descibes all the builtin tests.

3.5 Comments

To comment-out part of a line in a template, use the comment syntax which is by default set to ‘{# ...
#}’. This is useful to comment out parts of the template for debugging or to add information for other
template designers or yourself:

{# note: disabled template because we no longer user this
{% for user in users %}

...

14 Chapter 3. Template Designer Documentation

Jinja2 Documentation, Release 2.0

{% endfor %}
#}

3.6 Template Inheritance

The most powerful part of Jinja is template inheritance. Template inheritance allows you to build a base
"skeleton" template that contains all the common elements of your site and defines blocks that child
templates can override.

Sounds complicated but is very basic. It’s easiest to understand it by starting with an example.

3.6.1 Base Template

This template, which we’ll call base.html, defines a simple HTML skeleton document that you might
use for a simple two-column page. It’s the job of "child" templates to fill the empty blocks with content:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

{% block head %}
<link rel="stylesheet" href="style.css" />
<title>{% block title %}{% endblock %} - My Webpage</title>
{% endblock %}

</head>
<body>

<div id="content">{% block content %}{% endblock %}</div>
<div id="footer">

{% block footer %}
© Copyright 2008 by you.
{% endblock %}

</div>
</body>

In this example, the ‘{% block %}’ tags define four blocks that child templates can fill in. All the block
tag does is to tell the template engine that a child template may override those portions of the template.

3.6.2 Child Template

A child template might look like this:

{% extends "base.html" %}
{% block title %}Index{% endblock %}
{% block head %}

{{ super() }}
<style type="text/css">

.important { color: #336699; }
</style>

{% endblock %}
{% block content %}

<h1>Index</h1>
<p class="important">
Welcome on my awsome homepage.

</p>
{% endblock %}

3.6. Template Inheritance 15

Jinja2 Documentation, Release 2.0

The ‘{% extends %}’ tag is the key here. It tells the template engine that this template "extends"
another template. When the template system evaluates this template, first it locates the parent. The
extends tag should be the first tag in the template. Everything before it is printed out normally and
may cause confusion.

The filename of the template depends on the template loader. For example the FileSystemLoader
allows you to access other templates by giving the filename. You can access templates in subdirectories
with an slash:

{% extends "layout/default.html" %}

But this behavior can depend on the application embedding Jinja. Note that since the child template
doesn’t define the footer block, the value from the parent template is used instead.

You can’t define multiple ‘{% block %}’ tags with the same name in the same template. This limita-
tion exists because a block tag works in "both" directions. That is, a block tag doesn’t just provide a hole
to fill - it also defines the content that fills the hole in the parent. If there were two similarly-named ‘{%
block %}’ tags in a template, that template’s parent wouldn’t know which one of the blocks’ content
to use.

If you want to print a block multiple times you can however use the special self variable and call the
block with that name:

<title>{% block title %}{% endblock %}</title>
<h1>{{ self.title() }}</h1>
{% block body %}{% endblock %}

Unlike Python Jinja does not support multiple inheritance. So you can only have one extends tag called
per rendering.

3.6.3 Super Blocks

It’s possible to render the contents of the parent block by calling super. This gives back the results of the
parent block:

{% block sidebar %}
<h3>Table Of Contents</h3>
...
{{ super() }}

{% endblock %}

3.7 HTML Escaping

When generating HTML from templates, there’s always a risk that a variable will include characters that
affect the resulting HTML. There are two approaches: manually escaping each variable or automatically
escaping everything by default.

Jinja supports both, but what is used depends on the application configuration. The default configua-
ration is no automatic escaping for various reasons:

• escaping everything except of safe values will also mean that Jinja is escaping variables known to
not include HTML such as numbers which is a huge performance hit.

• The information about the safety of a variable is very fragile. It could happen that by coercing
safe and unsafe values the return value is double escaped HTML.

16 Chapter 3. Template Designer Documentation

Jinja2 Documentation, Release 2.0

3.7.1 Working with Manual Escaping

If manual escaping is enabled it’s your responsibility to escape variables if needed. What to escape?
If you have a variable that may include any of the following chars (>, <, &, or ") you have to escape
it unless the variable contains well-formed and trusted HTML. Escaping works by piping the variable
through the |e filter: ‘{{ user.username|e }}’.

3.7.2 Working with Automatic Escaping

When automatic escaping is enabled everything is escaped by default except for values explicitly
marked as safe. Those can either be marked by the application or in the template by using the |safe
filter. The main problem with this approach is that Python itself doesn’t have the concept of tainted
values so the information if a value is safe or unsafe can get lost. If the information is lost escaping will
take place which means that you could end up with double escaped contents.

Double escaping is easy to avoid however, just relay on the tools Jinja2 provides and don’t use builtin
Python constructs such as the string modulo operator.

Functions returning template data (macros, super, self.BLOCKNAME) return safe markup always.

String literals in templates with automatic escaping are considered unsafe too. The reason for this is
that the safe string is an extension to Python and not every library will work properly with it.

3.8 List of Control Structures

A control structure refers to all those things that control the flow of a program - conditionals (i.e.
if/elif/else), for-loops, as well as things like macros and blocks. Control structures appear inside ‘{%
... %}’ blocks in the default syntax.

3.8.1 For

Loop over each item in a sequece. For example, to display a list of users provided in a variable called
users:

<h1>Members</h1>

{% for user in users %}

{{ user.username|e }}
{% endfor %}

Inside of a for loop block you can access some special variables:

Variable Description
loop.index The current iteration of the loop. (1 indexed)
loop.index0 The current iteration of the loop. (0 indexed)
loop.revindex The number of iterations from the end of the loop (1 indexed)
loop.revindex0 The number of iterations from the end of the loop (0 indexed)
loop.first True if first iteration.
loop.last True if last iteration.
loop.length The number of items in the sequence.
loop.cycle A helper function to cycle between a list of sequences. See the explanation below.

Within a for-loop, it’s psosible to cycle among a list of strings/variables each time through the loop by
using the special loop.cycle helper:

3.8. List of Control Structures 17

Jinja2 Documentation, Release 2.0

{% for row in rows %}
<li class="{{ loop.cycle(’odd’, ’even’) }}">{{ row }}

{% endfor %}

Unlike in Python it’s not possible to break or continue in a loop. You can however filter the sequence
during iteration which allows you to skip items. The following example skips all the users which are
hidden:

{% for user in users if not user.hidden %}
{{ user.username|e }}

{% endfor %}

The advantage is that the special loop variable will count correctly thus not counting the users not
iterated over.

If no iteration took place because the sequence was empty or the filtering removed all the items from
the sequence you can render a replacement block by using else:

{% for user in users %}

{{ user.username|e }}
{% else %}

no users found
{% endif %}

3.8.2 If

The if statement in Jinja is comparable with the if statements of Python. In the simplest form you can
use it to test if a variable is defined, not empty or not false:

{% if users %}

{% for user in users %}

{{ user.username|e }}
{% endfor %}

{% endif %}

For multiple branches elif and else can be used like in Python. You can use more complex Expressions
there too:

{% if kenny.sick %}
Kenny is sick.

{% elif kenny.dead %}
You killed Kenny! You bastard!!!

{% else %}
Kenny looks okay --- so far

{% endif %}

If can also be used as inline expression and for loop filtering.

3.8.3 Macros

Macros comparable with functions in regular programming languages. They are useful to put often
used idoms into reusable functions to not repeat yourself.

18 Chapter 3. Template Designer Documentation

Jinja2 Documentation, Release 2.0

Macros can be defined in helper templates with then are imported or directly in the template where they
are used. There is one big difference between those two possibilities. A macro that is defined in the
template where it’s also used has access to the context passed to the template. A macro defined in
another template and then imported can only access variables defined there or in the global context.

Here a small example of a macro that renders a form element:

{% macro input(name, value=’’, type=’text’, size=20) -%}
<input type="{{ type }}" name="{{ name }}" value="{{

value|e }}" size="{{ size }}">
{%- endmacro %}

The macro can then be called like a function in the namespace:

<p>{{ input(’username’) }}</p>
<p>{{ input(’password’, type=’password’) }}</p>

If the macro was defiend in a different template you have to import it first.

Inside macros you have access to three special variables:

varargs If more positional arguments are passed to the macro then accepted by the macro they end up
in the special varargs variable as list of values.

kwargs Like varargs but for keyword arguments. All unconsumed keyword arguments are stored in
this special variable.

caller If the macro was called from a Call tag the caller is stored in this variable as macro which can be
called.

Macros also expose some of their internal details. The following attributes are available on a macro
object:

name The name of the macro. ‘{{ input.name }}’ will print input.

arguments A tuple of the names of arguments the macro accepts.

defaults A tuple of default values.

catch_kwargs This is true if the macro accepts extra keyword arguments (ie: accesses the special kwargs
variable).

catch_varargs This is true if the macro accepts extra positional arguments (ie: accesses the special
varargs variable).

caller This is true if the macro accesses the special caller variable and may be called from a Call tag.

3.8.4 Call

In some cases it can be useful to pass a macro to another macro. For this purpose you can use the special
call block. The following example shows a macro that takes advantage of the call functionality and how
it can be used:

{% macro render_dialog(title, class=’dialog’) -%}
<div class="{{ class }}">

<h2>{{ title }}</h2>
<div class="contents">

{{ caller() }}
</div>

</div>
{%- endmacro %}

3.8. List of Control Structures 19

Jinja2 Documentation, Release 2.0

{% call render_dialog(’Hello World’) %}
This is a simple dialog rendered by using a macro and
a call block.

{% endcall %}

It’s also possible to pass arguments back to the call block. This makes it useful as replacement for loops.
It is however not possible to call a call block with another call block.

Here an example of how a call block can be used with arguments:

{% macro dump_users(users) -%}

{%- for user in users %}

<p>{{ user.username|e }}</p>{{ caller(user) }}
{%- endfor %}

{%- endmacro %}

{% call(user) dump_users(list_of_user) %}
<dl>

<dl>Realname</dl>
<dd>{{ user.realname|e }}</dd>
<dl>Description</dl>
<dd>{{ user.description }}</dd>

</dl>
{% endcall %}

3.8.5 Assignments

Inside code blocks you can also assign values to variables. Assignments at top level (outside of blocks,
macros or loops) are exported from the template like top level macros and can be imported by other
templates.

Assignments are just written in code blocks like any other statement just without explicit keyword:

{% navigation = [(’index.html’, ’Index’), (’about.html’, ’About’)] %}

3.8.6 Extends

The extends tag can be used to extend a template from another one. You can have multiple of them in a
file but only one of them may be executed at the time. There is no support for multiple inheritance. See
the section about Template Inheritance above.

3.8.7 Block

Blocks are used for inheritance and act as placeholders and replacements at the same time. They are
documented in detail as part of the section about Template Inheritance.

3.8.8 Include

The include statement is useful to include a template and return the rendered contents of that file into
the current namespace:

20 Chapter 3. Template Designer Documentation

Jinja2 Documentation, Release 2.0

{% include ’header.html’ %}
Body

{% include ’footer.html’ %}

Included templates have access to the current template variables minus local modifications.

3.8.9 Import

Jinja2 supports putting often used code into macros. These macros can go into different templates and
get imported from there. This works similar to the import statements in Python. It’s important to know
that imports are cached and imported templates don’t have access to the current template variables,
just the globals.

There are two ways to import templates. You can import the complete template into a variable or
request specific macros / exported variables from it.

Imagine we have a helper module that renders forms (called forms.html):

{% macro input(name, value=’’, type=’text’) -%}
<input type="{{ type }}" value="{{ value|e }}" name="{{ name }}">

{%- endmacro %}

{%- macro textarea(name, value=’’, rows=10, cols=40) -%}
<textarea name="{{ name }}" rows="{{ rows }}" cols="{{ cols

}}">{{ value|e }}</textarea>
{%- endmacro %}

The easiest and most flexible is importing the whole module into a variable. That way you can access
the attributes:

{% import ’forms.html’ as forms %}
<dl>

<dt>Username</dt>
<dd>{{ forms.input(’username’) }}</dd>
<dt>Password</dt>
<dd>{{ forms.input(’password’, type=’password’) }}</dd>

</dl>
<p>{{ forms.textarea(’comment’) }}</p>

Alternatively you can import names from the template into the current namespace:

{% from ’forms.html’ import input as input_field, textarea %}
<dl>

<dt>Username</dt>
<dd>{{ input_field(’username’) }}</dd>
<dt>Password</dt>
<dd>{{ input_field(’password’, type=’password’) }}</dd>

</dl>
<p>{{ textarea(’comment’) }}</p>

3.9 Expressions

Jinja allows basic expressions everywhere. These work very similar to regular Python and even if you’re
not working with Python you should feel comfortable with it.

3.9. Expressions 21

Jinja2 Documentation, Release 2.0

3.9.1 Literals

The simplest form of expressions are literals. Literals are representations for Python objects such as
strings and numbers. The following literals exist:

"Hello World": Everything between two double or single quotes is a string. They are useful whenever
you need a string in the template (for example as arguments to function calls, filters or just to
extend or include a template).

42 / 42.23: Integers and floating point numbers are created by just writing the number down. If a dot is
present the number is a float, otherwise an integer. Keep in mind that for Python 42 and 42.0 is
something different.

[’list’, ’of’, ’objects’]: Everything between two brackets is a list. Lists are useful to store sequential data
in or to iterate over them. For example you can easily create a list of links using lists and tuples
with a for loop:

{% for href, caption in [(’index.html’, ’Index’), (’about.html’, ’About’),

(’downloads.html’, ’Downloads’)] %}
{{ caption }}

{% endfor %}

(’tuple’, ’of’, ’values’): Tuples are like lists, just that you can’t modify them. If the tuple only has one
item you have to end it with a comma. Tuples are usually used to represent items of two or more
elements. See the example above for more details.

{’dict’: ’of’, ’keys’: ’and’, ’value’: ’pairs’}: A dict in Python is a structure that combines keys and values.
Keys must be unique and always have exactly one value. Dicts are rarely used in templates, they
are useful in some rare cases such as the xmlattr() filter.

true / false: true is always true and false is always false. Keep in mind that those literals are lowercase!

3.9.2 Math

Jinja allows you to calculate with values. This is rarely useful in templates but exists for completeness
sake. The following operators are supported:

+ Adds two objects with each other. Usually numbers but if both objects are strings or lists you can
concatenate them this way. This however is not the preferred way to concatenate strings! For
string concatenation have a look at the ~ operator. ‘{{ 1 + 1 }}’ is 2.

- Substract two numbers from each other. ‘{{ 3 - 2 }}’ is 1.

/ Divide two numbers. The return value will be a floating point number. ‘{{ 1 / 2 }}’ is ‘{{ 0.5
}}’.

// Divide two numbers and return the truncated integer result. ‘{{ 20 / 7 }}’ is 2.

% Calculate the remainder of an integer division between the left and right operand. ‘{{ 11 % 7 }}’
is 4.

* Multiply the left operand with the right one. ‘{{ 2 * 2 }}’ would return 4. This can also be used
to repeat string multiple times. ‘{{ ’=’ * 80 }}’ would print a bar of 80 equal signs.

** Raise the left operand to the power of the right operand. ‘{{ 2**3 }}’ would return 8.

22 Chapter 3. Template Designer Documentation

Jinja2 Documentation, Release 2.0

3.9.3 Logic

For if statements / for filtering or if expressions it can be useful to combine group multiple expressions:

and Return true if the left and the right operand is true.

or Return true if the left or the right operand is true.

not negate a statement (see below).

(expr) group an expression.

Note that there is no support for any bit operations or something similar.

• special note regarding not: The is and in operators support negation using an infix notation
too: ‘foo is not bar’ and ‘foo not in bar’ instead of ‘not foo is bar’ and ‘not foo
in bar’. All other expressions require a prefix notation: ‘not (foo and bar).’

3.9.4 Other Operators

The following operators are very useful but don’t fit into any of the other two categories:

in Perform sequence / mapping containment test. Returns true if the left operand is contained in the
right. ‘{{ 1 in [1, 2, 3] }}’ would for example return true.

is Performs a test.

| Applies a filter.

~ Converts all operands into strings and concatenates them. ‘{{ "Hello " ~ name ~ "!" }}’
would return (assuming name is ’John’) ‘Hello John!’.

() Call a callable: ‘{{ post.render() }}’. Inside of the parentheses you can use arguments and
keyword arguments like in python: ‘{{ post.render(user, full=true) }}’.

. / [] Get an attribute of an object. (See Variables)

3.9.5 If Expression

It is also possible to use inline if expressions. These are useful in some situations. For example you can
use this to extend from one template if a variable is defined, otherwise from the default layout template:

{% extends layout_template if layout_template is defined else ’master.html’ %}

The general syntax is ‘<do something> if <something is true> else <do something
else>’.

3.10 List of Builtin Filters

abs(number)
Return the absolute value of the argument.

batch(value, linecount, fill_with=None)
A filter that batches items. It works pretty much like slice just the other way round. It returns a
list of lists with the given number of items. If you provide a second parameter this is used to fill
missing items. See this example:

3.10. List of Builtin Filters 23

Jinja2 Documentation, Release 2.0

<table>
{%- for row in items|batch(3, ’ ’) %}
<tr>
{%- for column in row %}

<tr>{{ column }}</td>
{%- endfor %}
</tr>

{%- endfor %}
</table>

capitalize(s)
Capitalize a value. The first character will be uppercase, all others lowercase.

center(value, width=80)
Centers the value in a field of a given width.

default(value, default_value=u”, boolean=False)
If the value is undefined it will return the passed default value, otherwise the value of the variable:

{{ my_variable|default(’my_variable is not defined’) }}

This will output the value of my_variable if the variable was defined, otherwise
‘’my_variable is not defined’’. If you want to use default with variables that evaluate
to false you have to set the second parameter to true:

{{ ’’|default(’the string was empty’, true) }}

aliases d

dictsort(value, case_sensitive=False, by=’key’)
Sort a dict and yield (key, value) pairs. Because python dicts are unsorted you may want to use
this function to order them by either key or value:

{% for item in mydict|dictsort %}
sort the dict by key, case insensitive

{% for item in mydict|dicsort(true) %}
sort the dict by key, case sensitive

{% for item in mydict|dictsort(false, ’value’) %}
sort the dict by key, case insensitive, sorted
normally and ordered by value.

escape(s)
Convert the characters &, <, >, and " in string s to HTML-safe sequences. Use this if you need to
display text that might contain such characters in HTML.

aliases e

filesizeformat(value)
Format the value like a ’human-readable’ file size (i.e. 13 KB, 4.1 MB, 102 bytes, etc).

first(seq)
Return the frist item of a sequence.

float(value, default=0.0)
Convert the value into a floating point number. If the conversion doesn’t work it will return 0.0.
You can override this default using the first parameter.

forceescape(value)
Enforce HTML escaping. This will probably double escape variables.

24 Chapter 3. Template Designer Documentation

Jinja2 Documentation, Release 2.0

format(value, *args, **kwargs)
Apply python string formatting on an object:

{{ "%s - %s"|format("Hello?", "Foo!") }}
-> Hello? - Foo!

groupby(value, attribute)
Group a sequence of objects by a common attribute.

If you for example have a list of dicts or objects that represent persons with gender, first_name and
last_name attributes and you want to group all users by genders you can do something like the
following snippet:

{% for group in persons|groupby(’gender’) %}

{{ group.grouper }}
{% for person in group.list %}

{{ person.first_name }} {{ person.last_name }}
{% endfor %}

{% endfor %}

Additionally it’s possible to use tuple unpacking for the grouper and list:

{% for grouper, list in persons|groupby(’gender’) %}

...
{% endfor %}

As you can see the item we’re grouping by is stored in the grouper attribute and the list contains
all the objects that have this grouper in common.

indent(s, width=4, indentfirst=False)
Return a copy of the passed string, each line indented by 4 spaces. The first line is not indented.
If you want to change the number of spaces or indent the first line too you can pass additional
parameters to the filter:

{{ mytext|indent(2, True) }}
indent by two spaces and indent the first line too.

int(value, default=0)
Convert the value into an integer. If the conversion doesn’t work it will return 0. You can override
this default using the first parameter.

join(value, d=u”)
Return a string which is the concatenation of the strings in the sequence. The separator between
elements is an empty string per default, you can define ith with the optional parameter:

{{ [1, 2, 3]|join(’|’) }}
-> 1|2|3

{{ [1, 2, 3]|join }}
-> 123

last(seq)
Return the last item of a sequence.

length(object)
Return the number of items of a sequence or mapping.

aliases count

3.10. List of Builtin Filters 25

Jinja2 Documentation, Release 2.0

list(value)
Convert the value into a list. If it was a string the returned list will be a list of characters.

lower(s)
Convert a value to lowercase.

pprint(value, verbose=False)
Pretty print a variable. Useful for debugging.

With Jinja 1.2 onwards you can pass it a parameter. If this parameter is truthy the output will be
more verbose (this requires pretty)

random(seq)
Return a random item from the sequence.

replace(s, old, new, count=None)
Return a copy of the value with all occurrences of a substring replaced with a new one. The first
argument is the substring that should be replaced, the second is the replacement string. If the
optional third argument count is given, only the first count occurrences are replaced:

{{ "Hello World"|replace("Hello", "Goodbye") }}
-> Goodbye World

{{ "aaaaargh"|replace("a", "d’oh, ", 2) }}
-> d’oh, d’oh, aaargh

reverse(value)
Reverse the object or return an iterator the iterates over it the other way round.

round(value, precision=0, method=’common’)
Round the number to a given precision. The first parameter specifies the precision (default is 0),
the second the rounding method:

•’common’ rounds either up or down

•’ceil’ always rounds up

•’floor’ always rounds down

If you don’t specify a method ’common’ is used.

{{ 42.55|round }}
-> 43

{{ 42.55|round(1, ’floor’) }}
-> 42.5

safe(value)
Mark the value as safe which means that in an environment with automatic escaping enabled this
variable will not be escaped.

slice(value, slices, fill_with=None)
Slice an iterator and return a list of lists containing those items. Useful if you want to create a div
containing three div tags that represent columns:

<div class="columwrapper">
{%- for column in items|slice(3) %}
<ul class="column-{{ loop.index }}">
{%- for item in column %}
{{ item }}

{%- endfor %}

{%- endfor %}
</div>

If you pass it a second argument it’s used to fill missing values on the last iteration.

26 Chapter 3. Template Designer Documentation

Jinja2 Documentation, Release 2.0

sort(value, reverse=False)
Sort a sequence. Per default it sorts ascending, if you pass it true as first argument it will reverse
the sorting.

string(object)
Make a string unicode if it isn’t already. That way a markup string is not converted back to
unicode.

striptags(value)
Strip SGML/XML tags and replace adjacent whitespace by one space.

sum(sequence, start=0)
Returns the sum of a sequence of numbers (NOT strings) plus the value of parameter ’start’. When
the sequence is empty, returns start.

title(s)
Return a titlecased version of the value. I.e. words will start with uppercase letters, all remaining
characters are lowercase.

trim(value)
Strip leading and trailing whitespace.

truncate(s, length=255, killwords=False, end=’...’)
Return a truncated copy of the string. The length is specified with the first parameter which de-
faults to 255. If the second parameter is true the filter will cut the text at length. Otherwise it will
try to save the last word. If the text was in fact truncated it will append an ellipsis sign ("...").
If you want a different ellipsis sign than "..." you can specify it using the third parameter.

upper(s)
Convert a value to uppercase.

urlize(value, trim_url_limit=None, nofollow=False)
Converts URLs in plain text into clickable links.

If you pass the filter an additional integer it will shorten the urls to that number. Also a third
argument exists that makes the urls "nofollow":

{{ mytext|urlize(40, True) }}
links are shortened to 40 chars and defined with rel="nofollow"

wordcount(s)
Count the words in that string.

wordwrap(s, pos=79, hard=False)
Return a copy of the string passed to the filter wrapped after 79 characters. You can override this
default using the first parameter. If you set the second parameter to true Jinja will also split words
apart (usually a bad idea because it makes reading hard).

xmlattr(d, autospace=True)
Create an SGML/XML attribute string based on the items in a dict. All values that are neither
none nor undefined are automatically escaped:

<ul{{ {’class’: ’my_list’, ’missing’: None,
’id’: ’list-%d’|format(variable)}|xmlattr }}>

...

Results in something like this:

<ul class="my_list" id="list-42">
...

As you can see it automatically prepends a space in front of the item if the filter returned some-
thing unless the second parameter is false.

3.10. List of Builtin Filters 27

Jinja2 Documentation, Release 2.0

3.11 List of Builtin Tests

callable(object)
Return whether the object is callable (i.e., some kind of function). Note that classes are callable, as
are instances with a __call__() method.

defined(value)
Return true if the variable is defined:

{% if variable is defined %}
value of variable: {{ variable }}

{% else %}
variable is not defined

{% endif %}

See the default filter for a simple way to set undefined variables.

divisibleby(value, num)
Check if a variable is divisible by a number.

escaped(value)
Check if the value is escaped.

even(value)
Return true of the variable is even.

iterable(value)
Check if it’s possible to iterate over an object.

lower(value)
Return true if the variable is lowercased.

none(value)
Return true if the variable is none.

number(value)
Return true if the variable is a number.

odd(value)
Return true if the variable is odd.

sameas(value, other)
Check if an object points to the same memory address than another object:

{% if foo.attribute is sameas false %}
the foo attribute really is the ‘False‘ singleton

{% endif %}

sequence(value)
Return true if the variable is a sequence. Sequences are variables that are iterable.

string(value)
Return true if the object is a string.

undefined(value)
Like defined but the other way round.

upper(value)
Return true if the variable is uppercased.

28 Chapter 3. Template Designer Documentation

CHAPTER

FOUR

Indices and tables

• Index

• Module Index

• Search Page

29

30

INDEX

J
jinja2, 5

31

32

INDEX

A
abs() (in module jinja2), 23

B
BaseLoader (class in jinja2), 10
batch() (in module jinja2), 23

C
callable() (in module jinja2), 28
capitalize() (in module jinja2), 24
center() (in module jinja2), 24
ChoiceLoader (class in jinja2), 10
contextfilter() (in module jinja2), 11
contextfunction() (in module jinja2), 11

D
DebugUndefined (class in jinja2), 8
default() (in module jinja2), 24
defined() (in module jinja2), 28
DictLoader (class in jinja2), 9
dictsort() (in module jinja2), 24
disable_buffering() (method), 7
divisibleby() (in module jinja2), 28

E
enable_buffering() (method), 8
Environment (class in jinja2), 5
environmentfilter() (in module jinja2), 11
environmentfunction() (in module jinja2), 11
escape() (in module jinja2), 11, 24
escaped() (in module jinja2), 28
even() (in module jinja2), 28

F
filesizeformat() (in module jinja2), 24
FileSystemLoader (class in jinja2), 9
filters (attribute), 6
first() (in module jinja2), 24
float() (in module jinja2), 24
forceescape() (in module jinja2), 24
format() (in module jinja2), 25
from_string() (method), 6
FunctionLoader (class in jinja2), 9

G
generate() (method), 7
get_source() (method), 10
get_template() (method), 6
globals (attribute), 6
groupby() (in module jinja2), 25

I
indent() (in module jinja2), 25
int() (in module jinja2), 25
iterable() (in module jinja2), 28

J
jinja2 (module), 5
join() (in module jinja2), 25
join_path() (method), 6

L
last() (in module jinja2), 25
length() (in module jinja2), 25
list() (in module jinja2), 26
load() (method), 11
lower() (in module jinja2), 26, 28

M
Markup (class in jinja2), 11
module (attribute), 7

N
none() (in module jinja2), 28
number() (in module jinja2), 28

O
odd() (in module jinja2), 28

P
PackageLoader (class in jinja2), 9
pprint() (in module jinja2), 26
PrefixLoader (class in jinja2), 10

R
random() (in module jinja2), 26
render() (method), 7
replace() (in module jinja2), 26

33

Jinja2 Documentation, Release 2.0

reverse() (in module jinja2), 26
round() (in module jinja2), 26

S
safe() (in module jinja2), 26
sameas() (in module jinja2), 28
sandboxed (attribute), 6
sequence() (in module jinja2), 28
shared (attribute), 6
slice() (in module jinja2), 26
sort() (in module jinja2), 27
stream() (method), 7
StrictUndefined (class in jinja2), 8
string() (in module jinja2), 27, 28
striptags() (in module jinja2), 27
sum() (in module jinja2), 27

T
Template (class in jinja2), 7
TemplateAssertionError (class in jinja2), 11
TemplateError (class in jinja2), 11
TemplateNotFound (class in jinja2), 11
TemplateStream (class in jinja2), 7
TemplateSyntaxError (class in jinja2), 11
tests (attribute), 6
title() (in module jinja2), 27
trim() (in module jinja2), 27
truncate() (in module jinja2), 27

U
Undefined (class in jinja2), 8
undefined() (in module jinja2), 28
UndefinedError (class in jinja2), 11
upper() (in module jinja2), 27, 28
urlize() (in module jinja2), 27

W
wordcount() (in module jinja2), 27
wordwrap() (in module jinja2), 27

X
xmlattr() (in module jinja2), 27

34 Index

	Introduction
	Prerequisites
	Basic API Usage

	API
	Basics
	High Level API
	Undefined Types
	Loaders
	Utilities
	Exceptions

	Template Designer Documentation
	Synopsis
	Variables
	Filters
	Tests
	Comments
	Template Inheritance
	HTML Escaping
	List of Control Structures
	Expressions
	List of Builtin Filters
	List of Builtin Tests

	Indices and tables
	Index
	Index

