
A Python for Future
Generations

Armin @mitsuhiko Ronacher

Hi, I'm
 Armin

... a
nd I do Open Source,

lots of Python and SaaS

Flask
Sentry

…

… and here is
where you

can find me

twitter.com/@mitsuhiko
github.com/mitsuhiko
lucumr.pocoo.org/

http://twitter.com/@mitsuhiko
http://github.com/mitsuhiko
http://lucumr.pocoo.org/

‘raising awareness’

the grass is always greener somewhere

… what's Python anyway?

Python is

whatever cpython does

behavior & stdlib

a + b = ?

a.__add__(b) ?

type(a).__add__(a, b) ?

a.__class__.__add__(a, b) ?

they are all not
necessarily correct

1 0 LOAD_FAST 0 (a)
 3 LOAD_FAST 1 (b)
 6 BINARY_ADD

which is “obj as num”.add
 or “obj as sequence”.concat

gave us unclear behavior

when subclassing builtins

there is no “+” operator

there is PyNumber_Add
 and PySequence_Concat

does it matter?

debatable but … kinda?

pypy, jython all copy the quirks
because

they want high compatibility
because

users would not use it if it was
not compatible

because

prevents more innovative

language changes

Python in 30 Years?

make the python we use

more like the python we teach

it's a common story

python developers
value compatibility

distutils

implements original setup.py

setuptools
monkey patches distutils to

support Python eggs

pip
monkey patches setuptools on the

fly to manage python packages

wheel
monkey patches setuptools to
build wheels instead of eggs

cffi
monkey patches setuptools and

distutils to build extensions

snaek
monkey patches cffi to build

Rust extension modules

the GIL

the only reason removing the GIL
is hard is backwards compatibility

looks like we're not good
at breaking compatibility

our only attempt was
both radical and not

radical enough

future of “scripting” languages

they are here to stay

but they will look different

standards + ecosystem

if we want to be here in 30
years, we need to evolve

where we did well

interpreter code
is readable

ease of compilation

extensibility

flat dependency chains

runtime
introspection

what we should probably do

easier and clearer
language behavior

looking elsewhere

JavaScript

Rust

both are new and modern
both learned from mistakes

packaging and modules

packaging and modules

package.json
Cargo.toml

packaging and modules

• metadata is runtime available

• by default no code execution on installation

• (optionally) multiple versions per library

• public vs private / peer dependencies

packaging and modules

• we're moving away from setup.py install

• pip is a separate tool

• wheels

• multi-version would require metadata access

where are we now?

packaging and modules

• we can steal from others

• can target python 3 only if needed

realistic change?

language standard

language standard

• javascript: clarify interpreter behavior

• simplified language subset?

• generally leaner language?

• more oversight over language development

language standard

• maybe micropython and other things can lead
the way

• community can kill extension modules for CFFI

realistic change?

unicode

unicode

utf-8 everywhere
wtf-8 where needed

unicode

• very little guessing

• rust: operating system string type

• rust: free from utf-8 to os-string and bytes

• explicit unicode character APIs

• emojis mean no basic plane

packaging and modules

• we would need to kill string slicing

• utf-8 everywhere is straightforward

• kill surrogate-escapes for a real os string?

realistic change?

extension modules

extension modules

more cffi
less libpython

extension modules

• tricky for things like numpy

• generally possible for many uses

realistic change?

linters & type annotations

linters & type annotations

babel, eslint, …
typescript, flow, …

linters & type annotations

rustfmt, gofmt, prettier, …

linters & type annotations

• maybe?

• typing in Python 3 might go this way

realistic change?

what you can do!

abuse the language less

sys._getframe(N).f_locals['_wat'] = 42

class X(dict):

stop writing non cffi extensions

stop being clever with sys.modules

awareness is the first step

QA&

